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I. INTRODUCTION 

This dissertation develops a mathematical tool and shows how this 

tool can be used for analysis and synthesis in a variety of areas. 

As digital and analog computer technology has progressed there has 

been increasing interest in the interface between analog systems (or 

analog nature itself) and discrete digital processors. Special coding 

schemes such as reflected binary codes and weighted Wbit codes for 

the integers 0-9 have been investigated (1,26,29). Methods for trans­

lating from digital to analog and analog to digital forms have been 

extensively pursued (21) including some investigation into decoding 

from digital form to an analog representation of a function of the 

digital form (7,l6). These interface problems have been investigated 

largely on an intuitive or cut-and-try basis. 

The defining relations describing the operation of digital processors 

are nearly always in terms of the symbolic logic known as Boolean alge­

bra invented by George Boole (3) (lol>-l864) and extended by such people 

as Whitehead and RusseU(30). This algebra is applicable to two-level or 

binary operations which led Shannon (27) to apply the algebra to relay and 

switching networks which are basically two-level in nature. Since Shannon's 

early work there has been extensive study of Boolean algebra and its 

applications, 

A relatively new field that is rather loosely connected with computer 

technology is the field of pattern recognition. Many papers have been 

written in this field in recent years (2,14,17,19,31). Most of these 

schemes consider the pattern to be a pattern of white and black areas 
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from which a set of "characteristics" of the pattern are derived. The 

decision (usually linear) as to what pattern is being observed is based 

on the relative values of the characteristics. The fundamental problem 

in all such schemes is to choose a good set of characteristics. Since 

most schemes translate the pattern into a finite two-valued two-dimen­

sional matrix a secondary problem exists in getting high resolution with­

out undue complication. Since the patterns are observed as white and 

black only, aultitone (black-grey-white) patterns cannot be handled 

effectively. 

This paper investigates the application of real polynomials of 

binary variables to the above areas. Coleman (6) makes use of a real 

polynomial approach in the design of core logic which is essentially a 

linearly separable function problem. He considers only the case of a 

two-valued function and only fitting "complete" functions (functions 

specified for a.11 possible values of the variables) with an orthogonal 

set of variables. This dissertation is much more general in approach, 

allowing arbitrary functions of the binary variables and considering 

incomplete functions. 
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II. REAL POLYNOMIALS OF BINARY VARIABLES 

A. Arbitrary Functions 

Definition 1: 

A two-valued variable is a variable x. that can take on one of only 

12 i 2 1 2 
two finite values x. and x. where xT 4- x.. x. and x. are both real. 

0 J J J •' 

Definition 2: 

A real polynomial of n two-valued variables is a function f such that 

f(x1,x2,x3,...,xn) = ko+kixi+k2X2+•••+knxn 

+ k12xnx2+kn' * ' (!) 

+ k123...nXlX2-,-Xn 

where x ,x_,...,x are two-valued variables, k , k , k ,..., k are 
J. d. n vj x d. J-£. • • .n 

constant coefficients of the polynomial, and the indicated operations are 

real multiplication and real addition. 

Definition 3: 

A complete function of n two-valued variables is a function defined 

for all possible combinations of values of the n variables. An incomplete 

function is a function of two-valued variables that is not complete. 

Several observations can be made at this point. The domain of a 

complete function can be visualized as an n-dimensional hyper-rectangle. 

with each vertex of the hyper-rectangle corresponding to a point of defi­

nition of the function. Thus the domain is a set of 2n finite points and 

the function takes on a finite set of values. This paper is concerned 

only with functions that have finite values at all points. 
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Definition 

A set of binary variables is a set x̂ x̂ ,... ,x̂  of two-valued vari-

1 1 1  i  2  2  2  9  ables such that x̂  = x̂  = x̂  = ... = x̂  and x̂ =x̂ =x̂ = ... = x̂ . 

Definition 5: 

A real polynomial of binary variables is a real polynomial of a set 

of two-valued variables where the set of two-valued variables is a set 

of binary variables. 

Any function of two-valued variables can be represented by a finite 

table listing the possible combinations of values that the variables 

{xj} take on and the value of the function for each point. An example of 

such a table for a complete function of three two-valued variables is 

shown in Table 1. 

Table 1. General function of three two-valued variables 

f(x1,x2,x3) 

1 
X3 X2 

1 
X1 yo 

1 
X3 X2 

2 
X1 yl 

1 
X3 X2 

1 
X1 y2 

1 
X3 X2 

2 
X1 y3 

2 
X3 4 

1 
X1 y4 

X3 X2 
2 
X1 y5 

X3 X2 
1 
X1 y6 

X3 X2 
2 
X1 y7 

X, 
J-
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3. The 0,1 Variable 

Definition 6: 

1 ' 2 The variable z. is a two-valued variable such that z. = 0 and z. = 1. 
J J J 

It follows directly that a set of variables {z.} is a set of binary 

variables. 

Definition 7 : 

The negation of a two-valued variable x. is denoted by x. and is 

1 2  2  1  defined such that x. = x. and x. = x.. 
J J J J 

Theorem 1: z. = 1 - z. 
J J 

1 2 
Proof: we have x. = 0 and z. = 1 then 

J J 

1 2 ~ï-l-z. = l- 0 = l = z. = z. 
J J J 

and 

2 i 2-1-z. = l- l = 0 = z. = z. 
J  J  J  

A function of three z variables is represented in Table 2. 

Table 2. General function of ẑ , ẑ , ẑ  

Z3 Z2 Z1 f(zi,z2,z3) 

0 0 0 yo 

0 0 - 1 71 

0 1 0 
y2 

0 1 1 
y3 

1 0 0 

1 0 1 
"5 

1 1 0 y6 

1 1 1 
y7 
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We can now proceed with two theorems that will allow us to find a 

polynomial in {z.} directly. 
J 

Theorem 2: Given any finite complete function f of n variables 

{z.} this function can be written as 

V = (?b=l=2'"'=n) + 

( 2 )  
+ (y2z1z2...zn) +...+ (-•r2z1z2*. ' zn> ' 

Proof : Consider the k th Doint z , ,z, . ,z..,, ,... ,z . 
- ak' bK® ' JK® j+11:® ' mc 

where the values of z , ,z.. ,... ,z „ are all 0 and the values of 
ak' bk* jk -

z _,...,z , are all 1. Then consider the 2 n  combinations of real -oro-
j+±k' ruse 

ducts of z and z variables such that none of the n variables appear both 

true and negated but all variables {z.} appear either true or negated. The 

only one of these products that is not zero for the k th point is the pro­

duct z z. ... z. zz and the nroduct at that -ooint is one. Therefore, 
a o j+1 n ' 

the only term of the function 2 that is non-zero is the term 

cz z. ,..z.z.,-...z where c is the coefficient of this term and we have 
a o j j+1 n 

f(za=0, z,o=0,..., z =0, z l̂,..., zn=l) 

= czakzbk,,,zjkz,i+lk,,,znk = c  ̂
X-;, • Sli • Jj • 

Theorem 3: Any arbitrary finite complete function f of n variables 

{z.} can be uniquely represented as a polynomial in {z.}. 
J J 

Proof: ' From Theorem 1 

z. = 1 - z. 
J J 

Therefore 2 can be written as 

f(z1,z2,...,zn) = [y0(l-z1)(l-z2)...(l-zn)] 

+ [ŷ  ( l-z2 )... ( l-zn ) ] + ... 
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which is a real polynomial in the binary variables ..,z , and can 

be reduced to the form of 1. 

The variables {ẑ } are convenient because all functions of variables 

{z.} may be represented as polynomials and these polynomials may be 

readily derived from a function table. 

C. Change of Variables 

Theorem U: Any function of n variables {z.} can be transformed 

to a function of n two-valued variables {x.by the transformation 

x. -
z, = ^ (3) 
J xT - xT 

J J 

and any function of n variables {x.} can be transformed to a function of n 

variables {z.} by the transformation 

x. = z.(x̂  - x"!") + xT (4) 
J J J J J 

The croof follows directly from substituting for x. in 3 and. for z. in b 
•] .] • 

• ]_ 9 
end from x. ~ x~. 

Theorem 5: fny finite function of n two-valued variables {x.} can 

be uniquely written as a real polynomial in {x.}. 

Proof : C-iven the function it can be transformed to a func­

tion of variables {z.} by Theorem 1+ and then written as a polynomial in 

{z.}. The function can then be transformed back to the variables {x.} by 

the linear transformation 3 resulting in a polynomial in {x.}. 
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D. Binary Functions 

It is of interest to consider the special case of two-valued func­

tions of two-valued variables, that is, functions which take on one of 

only two possible values. These special functions can be used to describe 

switching networks and computer circuits much as Boolean algebra is used. 

In Boolean algebra it is customary to denote the two values of a 

binary variable as 0 and 1. Although this choice is arbitrary and was 

probably chosen for convenience, it leads to direct equivalence between 

a real polynomial form and a Boolean polynomial form. 

Given a binary function of n variables {zy} that takes on one of 

the two values 0 and 1; the functional form of 2 is identical in form to 

the P-term canonical form (5) of the Boolean representation of the func­

tion, as defined by the function table, with logical negation analogous 

to variable negation of Definition 7, logical inclusive OP analogous to 

the real sum, and logical product analogous to the real product. 

Note that the function table of such a function in real variables is 

indeed identical to a truth table of Boolean logic. 

E. The Orthogonal Variable 

Definition 8: 

1 2 
The variable v. is a binary variable such that v. = - 1 and v. = + 1. 

.] J J 

It can be shown (15,17) that a set of variables v. form an orthogonal 
•J 

set (A proof by mathematical induction is given in Appendix A.). That is, 

given variables v]_»v2>'• • »vn and a11 possible products of these variables 

VJV̂ JV̂ v̂ ,...»VjV̂ ,...•,vn the variables and all products as listed 
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in a function table are mutually orthogonal and are all orthogonal to a 

constant in the sense that 

1 V. • ' 
and 

2n 

Ii = 0 

where k is an index of rows of the function table. Thus, all terms of a 

real polynomial in {v.} are mutually orthogonal. 

An algorithm for direct computation of the coefficients of the poly­

nomial in {v.} is developed in Appendix 3. 
J 

The coefficient c.. of the term v.v....v of the v polvnomial is 
i,]...m i j si ' 

1 2n C-M „ = (5) 

k=l 

"-and the constant term ĉ  is 

=0 - ;n Î :-'k- <6> 
k=l 

These coefficients can also be derived from the theory of orthogonal 

polynomials (3) and Fourier series (6). It is interesting that both ortho­

gonal polynomials and Fourier series reduce to the same system in two-

valued variables. Table 3 is a function table illustrating a particular 

function and sets of variables in {ẑ } and {v\} including the products of 

the variables {v\}. 
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Table 3. Example of a particular function in and {v.}. 

Z3 Z2 : Z1 V3 V2 V1 " *3^2 ^3^1 V2V1 ^2^1 
y 

0 0 0 -1 -1 +1 +1 +1 -1 2 

0 0 1 -1 -1 +1 +1 -1 +1 1 

0 1 0 +1 -1 -1 +1 +1 3 

0 1 1 -1 +1 +1 -1 +1 -1 1 

1 0 0 +1 -1 -1 -1 -1 +1 +1 2 

1 0 1 +1 -1 +1 -1 +1 -1 -1 2 

1 1 0 +1 T1 +1 -1 -1 3 

1 1 1 +1 +1 +1 +1 +1 +1 +1 k 

Notice that the variables {v.} and their products are indeed mutually 

orthogonal and each column v. contains an equal number of +1 and -1 terms. 

For Table 3 the polynomials in {z.} and {v.} will now be developed. 
J J 

The polynomial of the form 2 may be written directly. 

2̂liV3+zlV3+3i:iV3+zlz2V2V2Z3+2V2Z3+3iIZ2Z3+ltIl22Z3 . 

Substituting z. = 1-z. gives 
J J 

ĵ Kl-Ẑ Xl-Zg) (l-Ẑ +Z-̂ l-Zg) (l-Ẑ +Stl-Ẑ Zgfl-Ẑ  + Ẑ Zgfl-Zg) 

+2(l-z1)(l-z2) z3+2z1(1-z?)z3+3(1-z1jZgẐ +kẑ ZgZg 

which reduces to 

y=2-z1+z2-z1z2+z1z3+2z1z2z3 . (7) 

The coefficients of the polynomial in {v.} are 

co =  I^ yk =  r î ei"l2, V k =  'I 
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=2 " I i Vt "I ; e3-l .2; Vk -1 
r.—_l 

i j „ ii j, 
S C12 " 8 X  - 0  ;  « t i t  ,2, Yli:v3k;'k 

Jv-Ju Tl—± 

i G g i 8 g 
=23 = # 2 V3k"k = %  ̂ =123 = F %, ̂2k Vk = H ' 

k=l K_1 

Thus the polynomial of Table 3 in {v.} is 
J 

y = jjK 9-v1+2v2+2v3"i"2v]_v34'2v]L V3+v2v3+viv2v3 ) * (G) 

The equivalence of 7 and 8 can be checked by the transformation 

v+1 
z = —g— applied to 7. This gives 

(v+1) (v̂ +1) (v +l)(vc+l) (v\+l)(v +1) (v +l)(v +l)(v +1) 
y = 2 - - — + — r——— + 2 — 4, — 

-2 - fvi - i + K+ f - rriv2 - K - K - i+ r;v3+ K + K 

+ i + + r^3 " " k K + K " ? 

= ̂ (9-v̂ +2Vg+2v +2v̂ v +vgv̂ -v̂ vgv3). 

Thus the two polynomials are eouivalent. 

F. Approximation and Least Squares Fitting 

* In some cases it is desirable to find an approximate function of n 

two-valued variables that fits a given function to a required degree of 

accuracy. For example, a complete polynomial in 10 variables could have 

up to 2̂ ° or 102 U terms. This can be unrealistic and unnecessary in man;-

applications. 
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A common and very desirable method of curve fitting is the method of 

least squares. If we denote the approximated value of the function by y._ 

and the true value by ŷ  then the coefficients of the least squares poly­

nomial are the polynomial coefficients that give a minimum 

2̂  . g 
2 b\ - yk) - (9) 
k=l 

The orthogonal variables {v̂ } are particularly convenient in least 

squares approximation of complete functions of two-valued variables due to 

the following two theorems. 

Theorem 6: Given any finite complete function f of binary vari­

ables written as a real polynomial ? in the binary variables {v.}; the 

approximate polynomial P formed by deleting one or more of the terms of ? 

is the least squares best fitting polynomial in the remaining polynomial 

terms of P. 

Proof: Identify each of the possible polynomial terms of P 

by a set of variables p., ,n0,... .d .,... -"c arranged such that the n to 
j 2n 'J+1 

•o terms are those to be deleted. The corresponding coefficients are 
~2n 

c, ,c0,...,c . The exact function values y.„ and the approximate function 
x d. n̂ K 

values -jy can be written as 

H ' clplk+c2p2k+ " * * +C2np A ( 10 ) 

= clï'lk','c2p2kt""*cjp5k 

I I I 
where ĉ ,̂ ,...,c.. are the least squares best fit polynomial coefficients 

for the polynomial terms p1,p2,...,p.. 
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The sauarecL error E is 

a° 
2 = 2 (yt - >-k> 

k=l 

i i i 

= 2 x < l-k-clpl-Vc2p2k- •••-Cj?jk)2 

~ J ' 2 
= li (y - Ix W 

« » » 

Differentiating E with respect to C?]L»C2» • • • >Cj and setting the result eq.ua! 

to zero yields a system of j equations of the form 

-n 

2("¥ii + ?ik ?, Vik1 •0 3c. k=l i=l 
ii 

or 

j , 2% 
- Lk 2 cipik = 2 ykpLk k=l i=l k=l 

Rearranging the summation on the left yields 

j , 2n 2̂  

I i  "  I i  =  I i ( 1 1 )  

But from the orthogonality shown in Appendix A every term • 

2^ 2^ ^ 
X P4vPTk = ° except for i=L and % . Pt>Pt> = 2* . 
&L  ̂ k=l  ̂LK 

Therefore 11 reduces to 

-,n 

2"% " 2 w k=l 

or 
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• 1C 

which from 5 is the coefficient of the p, term of the original polynomial 

P. Thus 

t 
C = G 
L L Q.2.D. 

Theorem 7 : Given any finite complete function f of binary vari­

ables written as a polynomial P in {v.} and approximated by deleting terms 

c ., . ,c . . ,0«... .c p of 10; the mean souare error E of the approxi-
0+1*0+1' j+2-j+2' ' 2n-2n 5 

•nation is 

" 2 2 2 
% = Cj+1 + =j+2+-'%n 

£ . 2  2  2  2  
* - C1 - =2 -- =j 

2^ - 2^ 
= Z 

>=1 •K 

Proof: Squaring equation 10 for any given point k gives 

•i • 1 cl-^c2'2Y*- • -+cr <13) 

Squaring and summing 13 over all points gives 

2^ ^ 2% 2^ 2^ 

ii7k " Ei (ei^= EiClSik + =2$2i i  ii ° iPik 

2n 

+ '''VV\ll Vsk> 
2̂  2° 2̂  2̂  2̂  2̂  

ii w Ei v»+ Ei^ Ei +-+ Ei wl. 1 
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Rearranging the summations gives 

,n n̂ 

Ii • 2 Vt & Wik + 1 =a=i 2 Î k=l k=l k=l 21rik 

,n ,n 

Ĉ nCi ? - _n, pik k=l 2°k 

:ut 

2 p--?-- = 
>:=± "lk"ik 

,n 

l< 

i=l 

etc. 
0 ; if] 

I'nus, 

_n 

( l k )  

In similar fashion 

Then 

?k = " %k +"'+ 

2 

z 
k=l 

" 2  2  2  2  
yk = =1 + =2 +—+ =j (15) 

iiow 

,n 

=  t  

and from Theorem 6 

2n 

S = Si (ClP'lk+C2P2k+' ' •+Cjpjk+Cj+Ipj+Ik 
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+"'+C2a?2rV " Cl?lk * C2p2k----Cji?j>' 

2n 2 

* ti 'Vivo*+ 

which proceeding as from 13 to Ik yields 

2 " Vl • 'U V-

and from Ik z;ives 

d 
2 2 2 <i d d c 

= 2 yk - C1 - c2 ----- «, 
J. 

and from 15 give: 

2" _ 2' o 
•  - 2 .  • • ;  - 2  -

Theorems 6 and 7 show that a complete function of Dinar;- variables can 

be approximated by a least squares best fit by writing the function as a 

polynomial in {v.} and dropping terms. The approximation error can be 

readily found by equation 12. 

Although Theorem 6 gives a least square best fit for polynomials in 

{v.} the results can be extended to certain important cases of polynomials 

of any two-valued variables by Theorem 6. 

Definition 9'-

A real polynomial of two-valued variables (xj is of order o if there 

are no terms of* the polynomial involving more than o variables of {x.}. 

Theorem S: Given a finite complete function of two-valued vari­

ables {Xj} the least squares best fitting polynomial of a form allowing 

all terms of order less than o and any or all of the terms of order o may 
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be found by finding the least squares best fitting polynomial in {v.} with 

the corresponding terms (i.e. allowing all terms of order less than o and 

the sane terms of order o with x. replaced by v. ) and applying the 

translation 

xj =  l [ vj ( x2r xy )  +  xu +  x2j ]  ( l S )  

Proof: Since the transformation lo is a simple translation 

and constant expansion, every term of order o in the approximating poly­

nomial in {v.} will give no terms higher than o in the transformed poly-
U 

nomial and only these terms of order o in {x.} corresponding to the terms 

of order o in {v.}. Therefore, the transformation of the approximating 

polynomial in {v.} allowing a set of terms as described in the theorem 

will give an approximating polynomial in {x.} allowing the corresponding 
J 

terms. 

The proof goes now by contradiction. Assume' that there exists an 

approximating polynomial P, in {x.} allowing a given set of terms of order 
x J 

o but none higher that is a better least squares fit than found by the 

procedure of the theorem. Then the P__ can be transformed to a polynomial 

Pv in {v̂ } by the transformation 

2x. - x.. . - x0. 
v. —la—̂  (IT) 
a x2. - x13 

?v will have no terms of order greater than o and only terms of order o 

corresponding to terms of order o in P̂ . But the approximation in {v.} of 

the theorem is the best least squares fit in those terms, therefore, P̂  

cannot be better, contradicting the assumption of this proof. 

The type of truncation implied by Theorem 8 is very useful since 
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well-behaved functions tend to have the smallest coefficients on the 

highest order terms. 

G. Incomplete Functions 

The discussion up to now has concerned complete functions, that is, 

functions that are defined for every possible combination of variables. 

A set of n two-valued variables can take on exactly 2n possible combina­

tions or points in n-space so that a domain is inherently implied. How­

ever, a particular function may simply be not defined for some of these 

possible points. Table U shows a partially specified or incomplete func­

tion of 3 variables for which only five of the eight points are 

defined. 

Table U. An incomplete function of ẑ ,ẑ ,ẑ  

Z3 Z2 z. -L 
f(z1,z2,z3) 

0 0 0 yo 

0 1 0 y2 

0 1 1 y3 

1 0 0 yt 

1 1 1 y7 

There are an infinite number of polynomials in ẑ ,ẑ ,ẑ  that will 

pass through these points each giving a different set of values to the 

undefined points. Thus, there is no satisfactory single polynomial that 

can properly represent such a function. There are a couple of polynomials 

that are of interest related to this problem. One is a simple polynomial 
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passing through the points and the other is the least squares best 

fitting polynomial. 

A simple polynomial can be written for an incomplete function that 

is independent of the undefined points. This is shown in general in 

Appendix C but a simple illustration will suffice to demonstrate what 

happens. 

Consider the three variable function table of Table 5. All function 

values at defined points are symbolized by y and at undefined points by u. 

Table 5. A complete table of an incomplete function 

Z3 Z2 Z1 
f (z 
l'Z2 'Z3) 

0 0- 0 yo 
0 0 1 U1 

(undefined) 

0 1 0 y2 
0 1 1 y3 

1 0 0 z"k 

1 0 1 u„ 
? 
(undefined) 

1 1 0 u6 (undefined) 

1 1 1 
y7 

A function in z and z can be " «ritten in Lcluding the undefined points 

as follows 

f(z1»z2' Z3) = 3/ oz 1% " Ulz!z2Z3 
+ 72=1=2 Z3 + y3Zl=2z3 

+ J ' k Z  lV3 * U5Z1Z2Z3 
+ 
W2 Z3 y7ZlZ2z3 

Substituting 
*3 = 1" 

• z .  
J 
and grouping terms gives 
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ffz^ZgZg) = yg + =i(*i-yo) + ̂ 2̂̂ 0̂  + =3̂ Tyo) 

+ yo) + =1=3̂ 5̂ 1̂ ?o) (1G) 

+ ẑ ẑ Ug-ŷ -ŷ  ?o) + =1=2=3̂ 7-̂ 5 "2 *l->"o) 

If the undefined points are treated as "prohibited" or not allowed 

then the following is true : 

The z1 tern exists if and. only if the ẑ z0,ẑ ẑ t or ẑ ẑ ẑ  and 

and terns exist. Thus, the coefficient of the tern can be dropped 

if it is added to the ẑ zy and ẑ ẑ  terms and subtracted from the ẑ ẑ ẑ  

tern. 

The ẑ z, tern exists if and only if the ẑ ẑ ẑ  term exists, thus, the 

coefficient of z1ẑ  can be added to the coefficient of ẑ ẑ ẑ  and the 

ẑ zg term dropped. The ẑ ẑ  tern can be handled similarly. 

Performing these groupings on 18 gives 

?Ux , z 2 , z 3 )  '  y0 +22iy2-y0) + =3<yt-y0) • 

* '0 +<Vy0)] +-zi2223[57"'V,15-y3+:'l.+:'2+Ul 

- y0 •«Vsrk-sr8 V * (VytTul V * (Vy0> 

" (ui-yo ,] 

which reduces to 

(19) 

+ ̂ ẑ ẑ ŷ -yt + Yo) 

The function 19 passes through the defined points of Table 5 and the 

coefficients are independent of the undefined function values. Of course 

if any point of undefined value is substituted in 19 some definite number 
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will result but this number if a function of the function values at defined 

points. 

The next theorem is a significant property of this simple function. 

Theorem 9: Given any incomplete function of n two-valued vari­

ables defined at n points ; one and only one polynomial in {z.} of the form 
U 

?s {z } = ĉ  + C2P2 +...+ cipi (20) 

passing through the defined points, can be found. The {c.} in equation 

20 are constant coefficients and {p.} are found from 

j=l J 

where the j index represents the i th defined point and z.. is the value 
J K  

of z. for the i th defined point. Thus, ? is a polynomial that has, in 
J - s 

general, n terms. 

Proof: The existance of 20 is shown in general in Appendix C 

and the example above of Table 5. The uniqueness of 20 is shown in general 

in Appendix D and is illustrated by the following example using Table 5. 

Any polynomial in z, represents uniquely (from Theorem 3) some com­

plete function say that of Table 5. This function can be written as 

Pŝ Zl'Z2'Z3̂  = y0ZlZ2Z3 + U1Z1Z2Z3 * y2ZlZ2Z3 + y3ZlZ2Z3 
(21) 

+ ̂ =1=2=3 * *5=1̂ 2=3 ̂ 6=1=2=3 * y7̂ 1Z2Z3 

and also from 20 

Pŝ Zl'Z2,Z3̂  = C1 + C2Z2 + C3Z3 + ° b Z l Z 2  + =5=1=2=3 (22) 

Substituting z. = 1-z. in 21 gives 
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ps(zi,22,z3) - y0 • z1(u1-y0) * ' «s^vv 

+ + 2i23(u5"y'4"v;''o) 

+ v3
(vyiry2+" o> • wVm 

+ (23) 

Since 22 and 23 are identities then they may be equated term by term. 

c1 = y0 

0  = Ul~y0 ' ̂ l^G 

C2 = y2~y0 

c3 = yU"y0 

ck = y3~y2"yl+y0 

0 = û -ŷ -û q = -45-74-70+73 = 

0 = ̂ -71,-72+70 ! %6=)'l++y2-yc 

c; = yt-tv"3^"2^o 

;• 2
+7o-/i-/3̂  ]•*•> 2+j o~" 0 

ŷT~ŷ ~y3 ŷO 

Thus ?s(z^,z?,zn) describes the complete function of Table 6. Every 

complete function value of P_(z^,zg,z ) is uniquely determined. Therefore. 

?g(z^jZ^iZg) is unique from the uniqueness of polynomials of complete 

functions. 
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Table 6. Example of a simple polynomial 

Z3 Z2 Z1 Ps ẑl'z2'z3^ 

0 0 0 yQ 

0 0 1 yo 

0 1 0 y2 

0 1 1 
y3 

1 0 0 y4 

- 1 0 1 y k  

1 1 0 
" lA 2~'y G 

1 1 
"t 

This means that every other polynomial pass ing through the defined 

points must have in one or more of its non-zero terms a product 
n 
E (  
j=i 

where L is an index corresponding to an undefined point of the incomplete 

function. 

.Another important polynomial relating to an incomplete function is 

the least squares best fitting approximation. An incomplete function can 

be thought of as a function defined on all of a set of reduced points. 

In general there is no orthogonal representation of the reduced points, 

therefore, there is generally no polynomial that can be written that can 

be reduced to a least squares best fit simply by dropping terms. Thus, 

finding a least squares best fit becomes a far more difficult task and 

translating to {v.} has no great advantage. The general approach to 

finding the least squares best fit is outlined below for generalized 
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variables {x.}. 

C-iven a finite incomplete function of two-valued variables {x.} defined 

for q points the least squares best fit of the form 

= % + % +—+ % 

where p^,pg,...,p^ are the allowable product terras (including possibly 

a constant) of {x.} may be found as follows 

g . 2 

- lx ('k-'k' 

= X (y!,-Ciplk-C2p2k VW' k=1 

Differentiating with respect to c^,c?,...c^ and setting the results 

equal to zero yields the system of L = 1,2,...,m equations in m unknowns of 

the form 

o c q q 

C1 5 XlkxLk + c2 X .  x2kxLk+ * * ' +Cm X  XnkXLk = X  xLkyk i-;=l &=1 k=l k=1 

This system can usually be solved for c^,cC),...,c to give the least 

squares polynomial coefficients desired. Note that to find a best 10 term 

polynomial requires solving a system of 10 linear equations. This process­

ing is fairly amenable to a digital computer solution. In practice it 

turns out that using a system of variables {z.} tends to give a fairly 
J 

simple set of numbers for the system of equations. 

The preceding material provides a firm foundation for the applications 

that follow. The most significant conclusions are: 

l) Any complete finite function of two-valued variables can be 

uniquely written as a polynomial in any set of two-valued variables. 
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2) The polynomial coefficients may be readily determined by the 

methods of Theorem 3 or equations 5 and 6 then transformed to any set of 

two-valued variables. 

3) The orthogonality of the variable fv\)leads to finding least 

squares best fitting polynomials of complete functions. 

h) Any incomplete function can be written uniquely in the form of 

Theorem 9. 
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III. LOGIC /'I?K REAL POLYNOMIALS 

A. Representation of Some Common Logic Operations 

It has been shown that the truth table or logic function of Boolean 

algebra can be represented as a binary function of binary variables. A 

compilation of some common Icric operations represented as polynomials in 

the variables {z.} and fr } follow, {w.> is used as the logical symbol. 

f{v.} has value + 1 for f{w,} = 1 and -1 for f{w.} =0 and f{z,} has value 
j j v -j 

+ I for f{w.} = I and 0 for f{w.} =0. 
<] j  

1. Logical product ^ 

f
i
ui'z2) " v: 

fv(vi'v2) * I1"'! • ""2 + Va - 11 

Table 7. Logical product truth table 

~"2 '•J 

0 Û V 

0 G 

1 0 u 

1 1 -

2. Logical inclusive CP 7 "'2 
(Table c) 

fgfZl'Zg) = s. + 
Z2 ~ 

=1=2 

VV'a1 = i(1 + ' rl + v2 " Va' 
Table 3. Logical inclusive 03 tr uth table 

*2 W1 2' 

0 0 0 
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Table S. Continued 

"2 "1 ' i' z 
'(w, j 

3. Logical exclusive CR v, © v (Table 9) 

Mz- ,  ,2 0 )  =  Z +  Z„ ,  -  22 

— — V - V , fr(vl'v2J 

Table J. Logical exclusive OR truth table 

s '"( ,-v 

b. Negation (Table 10) 

f(z) = z = l-z 

f(v) = v = -v 

Table 10. Negation truth table 

f { " )  =  - t  

1 

0 

5. 3-tero. majority logic (Table 11) 

fz(zl'z2'z3) = zlz2 ' zlz3 + Z2Z3 " 2z1z2z3 
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mwv " f'-'i+ t2 + v3 - vav 

Jable 11. Majority logic truth, table 

w3 V2 W1 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 

1 0 0 0 

1 0 1 

1 2_ 0 1 

T_ 1 : 1 

6. General odd p arity func tion v © " 2  © v _ © ... © 

f{w.) = 1 at point k i f {-i*> contains an odd number of l's and 

f{:: r.} = 0 if {v.. 
J J* 

} contains an even nuir-ber cf l's. 

f{v.} = 
n 

f{z } = mod 2 i£ 
p l  

ZJ 

7. General logical product :73 
V 
n 

f{v.} = 1 if aXv*2) • • • 5vn are'all 1 and f{v.} = 0 otherwise. 

' f{zj} ' V r - - Z n  

The last tiro logic operations are of particular interest because they 

give a logic interpretation to the real products in {v.} and {z.}. 

The functions above are written so that the two values of the func­

tions are the sane as the values of the dependent variables and have a 

direct correspondence to the logic variable and functions. Given a 

J 
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function f^ of two other logic functions f^ and f0 

and given the corresponding polynomials as above in z and v: f ,f 
^i =2 

and f ,f ,f , then 
vl' v2' v3 

ana 

VVS' 

S'S-S' 

will correspond to 

fl î2'i3^ 

such that when f (? ,f„J = 0, f (f ,f ) will equal 0 and f (f ,f ) 
1 2 3 21 v 23 "i v v3 

will ecual -1, and when f_(f^,f_) = 1, f (f ,f ) will ecual 1 and 
' I d  - .  zl ^ ? 

1 2 ? 
f (f ,f ) will eoual +1. 
V-, V  '  

3. Proofs of Theorems of Logic 

The capability of replacing logic operations with polynomial functions 

leads directly to proof of Boolean logic theorems in terms of real vari­

ables. By applying more mathematical rigor to this discussion it should 

be possible to satisfactorily develop the basis and properties of Boolean 

algebra from real variable theory. It is not the intent of this paper to 

go that far. However, some samples of proofs are of interest. A couple 

of theorems on powers of the variables {z^} and tr,} are needed first. 

Theorem 10: (z.)n = z_. ; n 1,2,... 
—————- j J 

Proof: From definition 6 zt=0 and zf=l. Thus 
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= u = z. 

ana 

(zt)" = 1 = (z,)" " 

Lnce this exhausts all possible values of s. the thecreir. follows. 
j 

rneorem xl: (v. ) r̂" = 1 and (v. )' 13,1 = v. ; n = 1,2 
1 3 *- > ' 

Proof: ro~ u.efmiuion 

(v~)2n = (-l)2n = 1 
V 

and 

(v2)2- = ( 1)2= = i . 

f \ 2r 
Since this exhausts all possible values of v. then (v4) " = 1. 

(vl)2%-l = (-1)-^ = -1 = vt 
j 

-and 

(„2)2r.-! = (+1)2n+x = +1 = ̂  # 

Thus, = v. 

The following are sore fundamental (5) theorems of Boolean algebra. 

1. Theorems on complementation 

a. '•71 V v = 1 

Writing the left hand side in terns of z., and z., jives 

z1 + z1 " z1s1 

Substituting z. = 1-z^ gives 

z., + (l-z ) -z.(l-z1) 

irhich ecuals 

+ 1.-z, -z + (z1)2 
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Since (sj" = zn v:e have 

-=1 "=1 + =1 = ̂  

Jritin.T v.as a oolvno-iai ir. z. sives JL I - J. -

z. zn = z. ( 1-z.. ) = 3.-zr = 0 
j. 1 1 1 i ± 

Theoren on double negation v 

writing m terns ox - z .  gives 

(z.) = (1—z1) = l-(l-Z-) = 

3. Del .'organ's theorer.s 

V 

Writing the left hand side in terms of z1,z? gives 

(s, + z^ -z_ z„) = 1 -(z1 -z z._) 
! j_d: 1 1 v 

1 -Zn -Zc. -r Z- Z„ 

= (l-Z„ ) (l-Z,J 

=1=2 

and z,z_ corresponds to "r w 2  •  

b. V Vg = 

Writing the left hand side as a polynomial in z^,zg,z_ gives 

Z-, + Zg -Z^Zg = (l-Z^) + (l-Zg) - (x-Z1)(l-Zp) 

= l-zn + l-z0 -1 + z + zo -z z„ 1 d .  j. ^ id 

= i-vs 

= z1z2 
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4. Theorem on distribution V ).(w, V vr ) = v. 7 
J. t! J. 3 -I !L j  

Writing the left hand side as a polynomial in z1,z_,z„ gives 

o o 
(z-, + Z? - Z n Z  ) ( z  +  Z ,  " Z ,  Z . J  =  z ;  +  Z - Z 0  - z ^ z  4 -  Z ^ Z _ ,  

—— J-  ̂  ̂ _V J. J_ 1— 4M J* J 

which eouals 

zT + Z.Z- -Z. Z^ + -f- Z=Z_ -Z.Zr.Z_ -zrz_-z, Z„Z-+Z- Z0Z„ 
J. jL r _ '  ±  r -  I j  <d 3  -L j j. 3  1 2 3  J- 2 3  

vhich reduces to 

2, + z z„ -z_z_ + z, z„ + z^z -2znz^z_ -Z Z„ + z. z„z„ - L  1  L -  1  é  - L  3  C :  j  1 ^ 3  ± 3  ±  c  3  

2 i  -  Vj -Z1Z2Z3 * =1 * Z2Z3 -z1 ( z2z3 !  

which can be written as the Boolean sanation w_ V vr_.w„ 

C. Non-negation Logic 

The polynomial representation of any Boolean function can be readily 

used directly to develop a loçic circuit. Note that the negations of the 

variables are not necessary in such a system whereas the usual Boolean 

logic expressions involve negation. 

A circuit for providing a logical function of several logical vari­

ables can be most easily seen from the polynomial in {z.}. Such a 
T.  ̂

function 

«v • clpl * =2p2 +—+ v« 

can be instrumented by a logic circuit that will accept both positive and 

negative weighted inputs for the positive and negative coefficients. It 

should be a type of threshold circuit that will give an output voltage 

corresponding to a logical 1 when the sum of the inputs (sign considered) 

are greater than any number corresponding to the voltage value (loading 
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considered) between logical 0 and 1. The inputs can be ss.de up by generat­

ing the p terms arid using appropriate weighting resistors. The p teras 

can be generated readily by standard logical filTD circuits since the logical 

product and real product are of the same fora. 

Such a logic system has some rather interesting properties. Since 

the sua of the terms nominally takes on only one of two values the peak 

summing values are veil controlled. Since there is a distinct difference 

between the two sums the actual threshold cf the summiing-switching circuit 

is noncritical. Another interesting property is that some of the weighted 

terms can be cuite far off fron the nominal or hissing altogether with a 

high probability of the circuit giving the correct output. It is really 

only necessary that the logic function be linearly separable (see part 

IV) in the remaining p terns of the polynomial. Thus, logic circuits can 

be made up using AIxDeâ terms of the input variables and a weighted summa­

tion into a threshold-switching circuit with a high probability of giving 

the proper output even with failure of one or more parts of the circuit. 

This could be an important advantage in digital processors with extreme 

reliability requirements. In general, the polynomial instrumentation 

will be more complex than normal Boolean logic instrumentation although 

not requiring negated variables can be a simplifying factor in many cases. 

A very interesting property of the {z.} polynomial form of a Boolean 

function that may have value in some cases is that the real summation of 

terms may be replaced by nodulo-2 summation. 

Theorem 12: Given any complete function of two-valued variables 

written as a polynomial in {z.} with integer function values, all coeffi­

cients of the polynomial will be integers. 
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Proof : Appendix C shov that the coefficients of the poly­

nomial in z are found by surr.s end differences of function values. If the 

function values are integers then the coefficients must be integers. 

Theorem. 13: Given any tvo-valued complete function of tv o-valuec 

variables vith function value 0 and 1 and vritten as a polynomial in {z.} 

the pclynonial nay be reduced to the mcdulo-2 sur: only of the terms vith 

odd integer coefficients and those coefficients set equal to one. 

Proof: Prom Theorem 12 all coefficients must be integers. 

Since the p terms are all either zero or one, the sun and difference of 

coefficients «ill add to only one of zero or one. Since zero is even and 

one is odd it is necessary only to determine if the sum and difference of 

the coefficients as specified by the p terms is even or odd vhich can be 

found by a moculo-2 summation of the terms. Since an even number is zero 

in modulo-2 addition and an odd number is one in modulo-2 addition all 

terms with even coefficients may be eliminated and odd valued coefficients 

may be reduced to +1. 

Trie or em 13 leads to a fairly simple polynomial representation of the 

Boolean function except that modulo-2 addition (which is the logical odd-

parity function) is not too easy to instrument as a parallel operation 

(l6,lo) although it is quite simple as a serial operation (l6). It is 

significant that the terms still do not involve negated variables. This 

discussion leads to the following theorem in logic terms. 

Theorem 14: Any Boolean function can be -written as an odd-parity 

function of some set of products of the non-negated variables. 

It seems likely that this function is unique but the proof is not 

obvious. 
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Although other logic systems are possible, the t"o described here 

seen the sicst likely to have practical value. The first because it is 

potentially a high reliability system, in spite of circuit failure and the 

other because of its potential simplicity in certain applications. 
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iv. weighted suit decizioi: i/cic 

A. Fundamental Theory 

Definition 10: (22,23) 

f is a linearly separated truth function (also called linearly 

separable function and linear-input function) in the Boolean variables 

{w.} if there exists a real polynomial v i t h  { v  }  replaced by {z.} of the 
j -j -j 

form » 

À = a..z, -r a„7-r. +...+ a z + b 
1 ̂  ^ d n n 

where a ,a0,... ,a„,b are real numbers such that when f(v^ ,v ,xjv_ ) is 

true (or l) X is positive anc when f(w.,w , ... ,w_) is false (or 0) À is 

negative. 

This definition can be extended to nonlinear functions. 

Definition 11: 

_s a se parable function in the logical products c., ,q.p,... ,q^ of a 

set of Boolean variables {w.} if there exists a real polynomial in terms 

of the real product terms p. ,...,v of the real binary variable {z.} 
* J ' M  ̂/ » *- V| * -1 

f oM 
jl-j. ="2^2 =n-n ' ^ 

where a1,a ,...,a ,b are real numbers such that when f(w_,wg,...,w^) is 

true (or l) X is positive and when f (w. ,w^,... ,v^ ) is false (or 0) A is 

negative. 

There have been many papers (U,6,9,11,13,13,22,23,24,25) recently 

studying linearly separable functions. This interest comes about because 

such logic circuits as core logic, parametrc-n logic, and transistor-

resistor logic lend themselves naturally to instrumenting linearly 
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separable functions. 

Most papers are involved vith either finding mathematical characteris­

tics of linearly separable functions, finding methods of determining appro­

priate coefficient values, or algorithms for showing that a cdven function 

is linearly separable. Linear prograrcr-in- is cozmonly used and vork by X. 

Pan (10) on linear inequalities is applicable. 

Little work has been done on non-linear separability primarily because 

of the difficulty of analysis. The theory of real polynomials of binary 

variables can be useful in the study of non-linear separability in the case 

of completely specified boolean function. In this case the polynomial 2 k  

can be transformed to the set cf variables {v.} and a ncn-linear separable 

function of any n cf the p-terms can be treated as a linearly separable 

function. This is true because the {v.} and all possible products make up 

a complete orthogonal set such that no other variable cf the form of a 

variable v can be orthogonal to any term of the set. Thus any n of the 

variables and p-terms fora a basis for the complete orthogonal set. 

Orthogonal polynomial theory is useful in separable functions because 

it allovs a more rigorous definition of separability as in definitions 10 

and 11 and because if can be used to alloy certain non-linearly separable 

functions tc be treated as linearly separable. 

3. Hypothesis on Linear separability 

.A number of authors have given techniques for proving that a given 

function is linearly separable and in some cases incidentally yielding the 

coefficients. Linear programming is used by some (9,12) and C. Gaston (13) 

presents a matrix reduction technique based on the work of X. Tan (10) 
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and. C. Choi: (k). All such methods are quite laborious and usually involve 

some cut-and-try work. 

The hypothesis below is not proved but is a straightforward method cf 

showing linear separability in the case of a completely specified Boolean 

function. 

Hypothesis : 

Given a complete function f of n binary variables (w.}, f is linearly 

separable if and only if the polynomial in {v.} of the form 

% + ̂ 2 +—+ % = " 

ich that À > b if f is true (or l) and X < b if f is false (or 0), or -Lb b Uu 

X > o  if f is false (or 0) and X< c if f is true (or l), where c1 

are the coefficients that would appear on the respective first order terms 

of the real polynomial f in {v.} corresponding to f such that when f = 1 
v j -

then f__ = 1 and when f = 0 then f = -1, and b is some real number. 

ca,c_,...,c can be calculated and the value of À for each function point 
1' 2' ' n 

calculated. These X's can be checked to see if thg conditions of the 

hypothesis hold true. 

The necessity, however, has been neither proved nor disproved. Count­

er examples are difficult to work with because of the difficulty in showing 

whether a function is actually linearly separable or not. The hypothesis 

can be readily proven for two variables by exhaustion but exhaustive 

analysis of even three variables is prohibitive due to the fact there are 

256 possible Boolean functions of three variables. This number can be 

reduced by recognizing certain symmetries. 
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All linearly separable functions are Unate (22) and all u'nate func­

tions are linearly separable for three or less variables. But, Unate 

functions of more than three variables are not all linearly separable (25). 

Thus, in this area exhausting three variable functions is not really very 

convincing anyway. 

À hypothesis without proof may sees out of order in a paper such as 

this but the hypothesis is definitely of use in many cases for finding 

suitable weighting functions and the proof can be left as an exercise for 

sone later Graduate student. 
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A. Come Characteristics of 'Weight eû Codes 

Definition 12: 

A weighted code vith weights b. ,cn,..., c is a function f of tvc-
u j_ li 

valued variables such that the function values are the set cf integers 

0,1,2,... ,m and a linear, r-olvnomial ~ in {2 . } 

A * b0 * h*l * V» " Va 

can be written such that ?,_ = f for all defined points of f. 

The weighted codes that have been most thoroughly studied are those 

for which the function values are the integers 0,1,2,...,9. Such codes 

are called binary coded decimal or 3cd codes (1,26,29). ?. Richards (2c) 

gave a listing of U-variable (or 4-bit) BCD codes found by trial end erro 

C. vJeeg (29) showed that Richards had found the complete set of 4-bit BCD 

codes with positive weights and went on to give a complete list with both 

positive and negative weights showing Richards' work to be incomplete in 

that area. Ye eg restricted the weights to be integers -9 <_ I <_ 9. 

Theorem 15 : A function f of n independent two-valued variables 

defined at the points (1,0,0,...,0),(0,1,0,...,0),(0,0,1,0,...,0),..., 

(0,0,...,0,1) and (0,0,...,0) having function value 0,0,...,m is a 

weighted code with integer weights b1,bg,b if and only if the m-term 

polynomial as in Theorem $ is of the form 

?s = "s0 + Vl + V2 +-"+ Vr. (25) 

Proof: The sufficiency is obvious. The integer weights fol 

low from Theorem 12. The necessity follows .from the uniqueness of ? . 

Since f is defined at the noints where the variables are either all zero 
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or only one variaole is non-zero then F_ from Theorem 9 will contain the 

constant term and all first order terms plus a terni for every other de­

fined point of f. Gince is unique, then all other polynomials pass­

ing througn tne defined points Must have one or more non-zero terms of 

products otner than those in Pg. Since ? contains the constant term 

ana all first order terms of { z.} then all other polynomials passing 

through the defined points cf ? will have one or more non-zero terms of 

order higher than 1. Thus no polynomial passing through the defined 

points of f other than ?e can be of the form of 21. %E.B. 

Theorem 15 gives a method for finding the weights cf weighted codes 

if such weights exist and the restriction on having certain points de­

fined is observed. 

5. Decoding Hen-weighted Codes 

If the function is not of a weighted code form, real polynomials 

can be used to find a decoding function. Any polynomial passing through 

the defined points can be used although using judicious choice such as 

the simple polynomial ?c of Theorem 9 can aid in keeping the decoding 

simple. A simple example of non-weighted decoding is shewn using Table 

12. This code is a complete function shewn with both the binary vari­

ables w^jw^jw^ and the real variables v^,v?,v0. It is of the type known 

as reflected binary and is useful in mechanical analog to digital con­

verters . 

Table 12. Reflected binary code• 
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Table 12. Continued 

-1 

system of equations 5 and 6  r i v e s  the polynomial 

f(", ,V ,vj = -(T + -V, - 2V„.V 4- v. V,,"-,) 
-L i-m > « - _J «—3 «L. 

which can be transformed to a polynomial i; 

(26)  

f(s ,zn,z ) = z, + 3z0 + 7z- - 2z ,Z0 - 2z,,z0 - cz z0 J- kz„z0zo 
«i» dL _j -i_ C-  ̂ — •— —» t— —' 

{7 -i- - f; 
v " 

.(2-z_)]} . ( 2 0 )  

(27) 

The form of 2c is useful if parity functions ox ûr.e vs.rir.Cies are 

available (l8) and the form of 25 can be useful in certain applications. 

27 is more complicated than the others but can ce instrumented by finding 

logical products and taking the weighted sum; both operations are quite 

straight forward. 
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VI. YUKCTIO^AI. DECODING 

A. General Considerations 

One of the zost useful applications cf real polynomials of binary 

functions is functional decoding. This cas. ne su circuits with sji analog 

output tr.at is a function of a digital input or transformation to s one 

discrete or digital fora of a function of a digital input. The real 

polynomial theory above applys directly to such problems since the poly­

nomial itself is a description of the decoding. 

In this section it is cor'ur.on to talk about a sine ^unction or square 

function. This can be interpreted to mean the function under considera­

tion is the sine or square function of a variable that increases linearly 

down the function table. In examples both the function and linear inter­

pretation denoted by g will be given. 

3. Square Function 

A simple example of functional decoding is the square function 

illustrated in Table 13. 

Table 13. Complete three variable square function 

g v v, ?( ) = s" 

10 0 1 1 

2 0 10 it 

3 0 11 9 

U 1 0 0 le 

5 10 1 25 

6  1 1 0  3 6  
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Pable 13. Continued 

1 7  ( ) - S 2  

"3 "2 wl 
•  \  i  5  

7 1  1  l  4 9  

Two real polynomials describing Table 13 are 

f(v1,"2,v ) = 35+7v1+lUv2+28V +2 V, Tg+4v^v_+8TgT^) 

and 

'(z ,z ,z ) = z^+lz +loz +lz z^+8z^ z_+l6z?z, 
' 1 2 '  3  " 1  2  3  1 2  1 3  ^  j  

Thus the function can be instrumented to find an analog output by 

taking a weighted sur? of the first order and second order logical products. 

The weighting and addition could also be done by digital operations and 

the result would be a digital number representing f. ïlote that no third 

order tern appears in the functions of {z.}and {v.}. y 

C. Theorem Relating Binary Power and Function Power 

Theorem 1c: Given any real ordinary polynomial f of order o in a 

set of variables g1,g ,...,g where g1 ,g2)•••>E„ are all functions of a 

set of two-valued variables such that {g^} are each a weighted code with 

weights ~c0''°n' ̂len - can "e "bitten as a polynomial in {z.} of 

lore than o. 

Proof: The variable g_. can be written as 

Si = \ + %2=2i +—+ Vni 

The highest order terms of f{g^} contain at most o terms of {g.} and since 

{g.} are each linear in a set { z. 5} the order of the highest possible term 

in {z.^} is o. 
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This theorem has application not only in fitting polynomials of 

weighted code function but in approximations. K'cte that transformation 

from (z..} to any set of two-valued variables {x..} does not increase the 
•J- J1 

order o of the polynomial. 

Corollary 1: Given a function f cf a set of weighted code functions 

and an approximate polynomial in {5.} of order c there can be no 

better fit by any given criteria than the best fit polynomial in {z.} cf 

order c. 

"vith a best fit criteria such as least squares the best fit in {z.} 
•j — 

of order c is usually far superior to the best fit in cf order o. 

From Corollary 1 the great usefulness of the orthogonal variables 

{v.} is obvious. For well behaved functions of ordinary real variables 

a better and better fit will be achieved as the order of an approximate 

polynomial is increased. The same must hold true for binary variables 

of the real variables if they are weighted code functions of binary 

variables. 

An example of approximate fitting is given later. For incomplete 

functions the least squares analysis described previously can be used, 

however, a different method of treating incomplete functions is given next. 

D. Segmented Approximation 

Segmented approximation is the use of different polynomials to 

describe different parts of a given curve (15,28). This can be particular­

ly useful in incomplete functions. ITote that the function f of a weighted 

code variable g is complete in {z..} only-if g,, is complete thus taking 

on exactly 2n values, n 1,2,... . This will certainly not always be the 
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case. This probien can be handled in several -ays : 

1) Find the least squares best fit in the incomplete function by the 

method of Section II F. 

2) Pick a convenient set of values to define the undefined points. 

3) Partition the domain g into sets of points that are complete in 

{ z . } .  

'0 Combine 2) and 3). 

Convenient ways of picking arbitrary points are to either extend the 

function f if it is known for other values (this is dene in a later exam.pl 

or use some form of extrapolation to find the additional points (15). 

The example given in Table lU is used to demonstrated partitioning. 

Table 1^. Incomplete three variable square function 

Z3 z2 2I 

fj 
" r

3  

''tr-c V1 
f(.) = g" 

0 C 0  0 0 

1 0 0 1 1 

2 0 1 0 

3 C I 1 9 

k  1 0 0 lb 

5 o 25 

6 1 1 0 36 

g can b e partitioned at the first four variables giving the complete 

function of Table 15. 
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Table 15. Table for f̂  

g 

Z3 

V3 

Z2 

W2 

Z1 

W1 

II S-
< 

0 0 0 0 0 

1 0 0 T_ 1 

2 0 1 0 if 

3 0 I 1 9 

fi(zi • Z 2 }  = Z1 + 1:z2 + tziz2 

From the regaining part o f  1  "able 14 r  = U and 5 = 5 fori- the ccnplet; 

function given in Table 16. 

Table 16. Tabl .e f •or f2 

. S 

* 3  

"3 

Z2 

W2 

Z-. 

V1 
f?(.) = g' 

ii 1 0 0 16 

5 1 0 1 25 

f2(z1 ) = 16 + 9z1 

The function for g = 6 is singly f (z) = 3b. These functions can now 

be recorabined by using the fact that zy = 0 for Table 15, = 1 and 

ẑ  = 0 for Table 16 and z = 1, ẑ  = 1, and ẑ  = 0 for the value at g =6. 

The combination is as follows: 

f(z^,zg,z_) = z ^ f ^ z - ,  ,z2) + z3z2f2̂ zl̂  + z 3 z 2 z l f 3 ^ z ^  

= zofẑ +bzg+kẑ zg) + Z ^ Z ^ i l S - S Z j )  + sgzgzgzi 

= ẑ +̂ ẑ +lôẑ +̂ ẑ ẑ +ôẑ ẑ +l̂ ẑ ẑ -î ẑ ẑ ẑ  
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but z-j'zgẑ  is "not allowed" thus 

f(21,22,z3) = z1+̂ z2+l6z3+iiz1zC)+8z1z3+l6z?z3 (29) 

The tecnnioue arriving at 29 is quite similar to the system of finding 

a polynomial in z and z described in Theorem 2. 29 is an exact fit but 

the functions f.,,f? and f̂  could be approximations in general. 

The least squares best fit technique l) is always better than these 

ether approaches(at least in a least squares sense), however, in some 

cases the calculation of the least squares coefficients might be more 

expensive than the added complexity. 

I. Interpolation 

A function of binary variables can be interpreted to have useful 

meaning when the binary variables are allowed to take on values other 

than the two defined values for at least two kinds of weighted functions 

used as variables. An easily understandable variation occurs when binary 

variables are allowed to be continuous one at a time. 

The first case to be examined is the ordinary binary function shown 

for three variables in Table 17. Extension to more variables is fairly 

obvious. 

Table 17. Ordinary binary coded decimal code 

:3 z2 z1 

0 0 

0 1 

1 0 

f(.) 

J. 

r 
2 

'*3 
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Table IT. Continued 

zg z! r, f( •) 

"t 

" = z. + .-.2^ ~ 

Let z. be a continuous variable. .Then if z„ and z0 are held constant 

the function will be a linear function in zn passing tnrough 

the pair of points defined by the value of f corresponding to the value of 

i i 
Vte N»" L — * -i- u. -J — O — — w •* -W» V» WW» X». \-/*« w**  ̂ w _ m 

2  3 1  2  —  J .  —  £  

result is shown graphically in Figure 1. From this rzaph it can be seen 

that the variation of z is a fom of linear interpolation between defined 

points of the function. This interpolation can be used to give "finer 

grained" functions by replacing the variable z, by 2 or more binary vari­

ables that will give several pointsoh the interpolating line. For example 

z1 = t[211 + 2z12 + ':213! 

will give 3 points on a line fron - f to + lj if z.,,,z.2,z are organized 

in sequence as ordinary binary variables of the fern of Table 17. Fote 

that this interpolation increases the number of terms of a {z.} polynomial 

representation but not the order of the polynomial since z is linear in 

the added variables. 

If many points of a well behaved function are taken the interpolation 

will be cuite good. The slope of 'lines through adjacent points as describ­

ed above will take on the value of the derivative between the points by the 

f n  % z*. il s- is ai-LO":ec; to 
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Figure 1. Interpolation example 
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lav of the mean and as shorter and shorter line segments are talien, the 

derivatives of adjacent carve sections "become more nearly equal. 

Another weighted code system that lends itself to interpolation, in 

theory at least, is the reflected binary function of Table is. Extension 

to more than three variables is obvious. 

Table 13. General reflected binary code 

G Z3 Z2 2! f(.) 

0 0 0 0 
"c 

1 0 0 1 yl 

2 0 1 y2 

3 0 1 0 
73 

4 2_ ]_ • 0 

5 1 1 1 
75 

6 ]_ 0 1 ys 

7 1 0 0 
:'r7 

Reflected binary codes have the characteristic that in going from 

one integer of g to an adjacent one only one of the binary variables 

changes. If the domain z is visualized as a cube (or hypercube in general) 

this amounts to going from one vertex to an adjacent one. If at any point 

the variable, that changes is caused to change continuously from 0 to 1 

(or from 1 to 0) instead of discretely the result with respect to f will 

be a linear change in the function value from the value of the original 

vertex to the value of the next vertex. It must be linear because the 

function f is linear in any single variable of {zj and it must pass 

through the adjacent function values by the nature of the binary polynomial. 
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This reflected binary example is interesting in theory but difficult 

to instrument. Some insight into the type of surface in n-space that is 

generated by treating all (z.) as continuous can now be seen. The inter­

section of the surface with any of the extended planes of the faces of th 

hypercube must be linear cut the intersections with any other planes are 

in general non-linear. 

F. Sine Function Example 

A practical problem would be to generate the sine of an ordinary 

weighted binary function for angles from 0° to 90°. Such a function is 

given in Table 19 for 2° increments. The angle from 0° to 90° inclusive 

in 2° steps takes U6 points. 3y extending the definition to 92° and $U° 

1+0 points are defined. This can then be broken down into a 32 point 

complete function in zn and a 15 point complete function in 

Zĵ fZgfZyẐ . The least squares best polynomial of order 3 for fn is 

3^,2^,2^) = -0.000C913 + 0.0349675z^ + O.C69B9OZ2 

+ 0.1393200Z + 0.27577132̂  + 0.5300S31Z 

- 0.0001975z,z^ - 0.0005775z,z_ 
±  d  -L 5  

- 0.0016502^2^ - 0.0057750z^z_ 

- 0.00122252^2^, - 0.00359502,2^ 

- 0.01212002̂ 2 - 0.0063450zgẑ  

-0.0265700z.z_ - 0.0c27̂ 25z,,z_ 
•5 ? > 

- 0.01s300z z-.z - 0.00917ûz-z, 2r 3 4 5  2  4  ?  

- 0 . 0 0 k ^ o 3 z o z ^ z ^  - 0.c04600ẑ ẑ ẑ  

-0.00223502gẑ ẑ  - 0.00231502̂ 2̂ 2 

-0.0C10650ẑ ẑ ẑ  - 0.0011350ẑ z2ẑ  
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Table 19. Continued 

angle 
o 

Z5Z5Z4Z3Z2Z1 
F̂  exact sine F. a-nrrox. sine error 

90 101101 1.0000 0.99995 -0.00002 
92 101110 0.999% 0.999^0 +0.00000 
o h  101111 0.99T6 0.99TT0 -0.00010 
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-0.00050502̂ 2^2, ,  -0.00030002̂ 2.2.  
-L i -r L 'd i 

and the least squares best fitting polynomial ? of order 2 for ?2 is 

,2̂ ) = 0.S9G6T5 + 0.0lL350ẑ  + 0.028575%, 

+0.0525253^ + 0.03c225z, + 0.0023502.2. 
J t -L ci 

-0.004750ẑ ẑ  - 0.009̂ 502̂ 2,, 

-0.0095002^z_ - 0.0190002^2,, - 0.0381002.2, 
£3 C. '-r j 4 

and the approximating function P of f is 

?(zn ,2 2-,2]!,zs,Z<) = Î F' (z Z0,Z Z, ,Z ) + Z<2> (z Z Z ZjJ . 
O -T y v U J_ J. j -»• y v y <£. „L 3  ̂

contains 2c terms and ? contains 11 terms, therefore, a. total of 

37 weights are required. Since the sine is a smooth function and can be 

approximated quite accurately with linear interpolation of 4° segments, 

interpolation for z_1 is definitely possible. Using 

2, = 1/04 (z,-+2z +̂ z ,.+Gz -KlSz,.+32z ) 
J. jlo lp j.'-t 1 j J - d  J.1 

will give an angular resolution of l/lo degree which is in the same order 

as the accuracy of the approximation F. Every term in which ẑ  appeared 

would now have c terms giving a total of 127 weights required (one for 

each term of ? and P, containing a z1 term), however, many of these new 

coefficients would be negligible reducing the total number of weights 

required to a.bout 30. Thus, a weighted sua of logical products using 

about 80 weights (many of which could be fairly inaccurate) can provide 

a sine function output cf an ordinary binary variable input with an 

accuracy of about 0.1%. 

G. Applications 

There are many applications of functional decoding, and a few of 

the more interesting ones are mentioned here. 

A fairly common problem in radar systems or any system requiring 
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processing of coordinate data fron angle sensors is conversion fron a 

digital shaft encoder (usually in reflected binary) to trionosetric func­

tions. Functional decoding is very convenient in defining a conversion 

circuit. 

Although conversion to analog functions is the most obvious, con­

version to a digital number can also be convenient. In the sine function 

example above, the 30 weights could be stored and the sine (in digital 

fora) of a binary number could be found by programming the appropriate 

additions and subtractions. The important fact here is that only addition 

and subtraction are needed and not multiplication, division, or taking 

powers. This principle could be extended to any function. 

An interesting possibility is that of using functional decoding to 

find an approximate product of two numbers. A direct approach or quarter-

so uare multiplier approach might be used. 

It is important to note that the real polynomial approach to func­

tional decoding can be applied to functions of more than one variable. 

This might turn out to be one of its most useful properties. It is diffi­

cult to get analog functions of several variables by any technique and 

digital functions of several variables can require extensive storage or 

long calculation. 
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VII. PATTEBI7 RECOGNITION 

The Introduction points out that pattern recognition schemes have 

been extensively studied recently. 5one problem areas are l) lack of 

a good useable description of patterns, 2) graininess of the mathematical 

observation, and 3) inability (in -est cases) to handle nuititone 

patterns. 

The polynomial of binary variables approach to functional decoding 

has interesting application to these problem areas. The degree of dark­

ness can be treated as a function of the tvo (or possibly three) coordiante 

variables and can be found as a polynomial in binary coded coordinate vari­

ables . The most interesting polynomial to use is in {v.}. Due to the W 

orthogonality the contribution to the function of any term can be determined 

directly fro- the coefficient of the term. Thus the coefficients of the 

polynomials in {v.} for a set of patterns can be investigated and selected 

coefficients can be used as the "parameters" describing the pattern. 

Mote that multitone functions are readily treated. Graininess can be 

improved by considering the amount of dark area in a given area that pro­

vides a function point, "ote also that three dimensional patterns can be 

handled in a similar manner. 

These parameters can be analyzed and the decision as to pattern 

can be by either an adaptive system or direct statistical analysis. This 

type of problem can be handled very nicely by statistical analysis. 
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VIII. Conclusions and Summary 

This dissertation has developed the idea of real polynomials of binary 

variables and developed and suggested several areas of application. 

Several uses have been given in the areas where Boolean algebra is 

traditionally applied. The "hole area of Boolean functional separability 

can possibly be treated from real variables and some approachs have been 

suggested. 

The study of weighted codes seer.s to fall naturally into the category 

of real function analysis. The very definition of weighted codes is more 

meaningful in terns of real variables. 

Functional decoding is another natural application. This decoding car-

be digital to analog or digital to digital and functions of several vari­

ables can be treated. 

Pattern recognition is the least developed area of application given 

in this dissertation. This is not due to its lack of importance, on the 

contrary, it nay be the most important area. However, en adequate analysis 

of this application would be a lengthy dissertation in itself and is beyond 

the scope of this dissertation. 

Some specific applications developed are: 

1) a different technique for proof of Boolean logic theorems and 

identities ; 

2) an inherently reliable logic system; 

3) a simple non-negation logic system: 

h) a hypothesis on linear separability of Boolean functions ; 

5) a representation of and a theorem on weighted codes ; 

6) design of decoding circuits for non-weighted codes; 
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7) techniques for circuits to give functions of binary variables; 

8) a unique method of storing (digitally) function tables. 

Some obvious extensions of this material are: 

1) a complete analysis of application to pattern recognition; 

2) develop Boolean algebra from real variable theory; 

3) a more complete study of non-negation logic including circuits ; 

h) prove the hypothesis of part IV, section 3 and further extend the 

applications to separability theory; 

5) develop further restriction on sighted codes and study character­

istics of certain non-weicated codes ; 

6) extend functional decoding applications. 
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XI. AFPEITDIX A 

A. Orthogonality of the Variables {v.} 

Given a set of n two-valued variables {v } vith value +1 and -1 con­

sider the array of all the possible combinations k=l,2,...,2n of these 

variables and all possible products of {v.}. Lable in any order the vari­

ables v1>v2>' • • 'vr the products by p1,p2>... ,p n . The p-terms are 
2 -1 

mutually orthogonal such that 

~n 

?ik?1k " 0 £=± 

,n 

E x =  2 0  

(30) 

(31) 

and all orthogonal to any finite constant c giving 

n̂ 

Ex c p -  =  
(32) 

Proof: The proof is cy mathematical induction. The array for 

n=2 is given in Table 20. 

Table 20. Variable table for v_,v_ 

-1 

v„ 

-"3 

V1V2 

1 

2 

-1 

-1 

1 

1 

-1 

1 

-1 

1 

1 

-1 

-1 
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It is readily seen that 30, 31, and 32 hold for Table 20. Note also 

that the sign of any or all columns may be changed and the resultant arra* 

still satisfies 30, 31, and 32, and further that 

2n 

.2 Sikt-î-ik1 = "2° 
K=1 

Now consider the 2nx 2n array for n variables given in Table 21 where all 

the conditions given for Table 20 hold true. 

Table 21. Variable table for v. v....v 
12 n 

k c ?1 p2 
V-l 

i c V11 ' V21 V11V21*',Vnl 

2 c V12 V22 V12V22'*,Vn2 

3 c 

U
)
 

2̂3 V13V23'"Vn3 

•. . . . • • • 

• • • • • • 

„n 
2 c V V V V ...V 

12n 22n 12n 22n n2n 

if a variable Vn+T_ is added the new array will be of the form of Tabl 

22. From 30 n is orthogonal to ,...,c since 

 ̂2n*l 

2 (+l)t3.. = 0 and 2} (-l)-D., = 0. Considering the rows i:=l,2,... ,2" 
k=l 1K k=2n+l 

each column n is orthogonal to c,p., ,'0o,... ,b except r. and 
~2n+i 12' 2

n 1 _i * . "i 

- ̂ n+l +i for ''Mch 

2n 
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and 

2n 

Il V+ikV-+H = 2 

Similarly for k=2n+l, 2n+2,...,2n+1 each column o . . ̂ 
~2n+-? 1S orthogonal to 

every c,p ,p ,...,p except p. and n for which 
1 - 2 -1 1 2n+i 

2n+1 

= -2n 

k=2"+l " 2 +i 
2 , . 

and 

2n+1 

2 n P n ? n = 2n 

k=2 +1 2 +i 2*>i 

aow 

2
n+l 

.n = 2n-2n = n 
k=l 1 2n+i ? pi? 

ana 

2n+1 

2 ? ̂ P ̂  = 2̂ +2° = 2̂  
k=l 2 +i 2 +i 

Also for p,p ,...,p 
2*-l 

2n+l 2
n 2n+1 

Si % -1, Vi+ 2-tl - *+ 88 •2=1+1 • 

Thus, the conditions of Table 20 are true for n+1 if true for n, 

Thus, 30, 31, and 32 hold for any number of variables {v.}. 
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Table 22. Variable table for vn v0...v v ,n 12 n n+1 

k P Pi P 
2n-l 2n+3. 2n+2 2n+l_i 

+1 
11 21 V11V21*'*Vnl 

+v 
1.1 

+v 
12 +^21'"^! 

2 

3 

+1 

+1 

v 
12 

13 

22 

v. 
23 

V12V22*',Vn2 +V12 

V13V23" 'Vn3 +V13 

+v 
22 

+v, 
23 

+V12V22'',Vn2 

+V23'"\3 

2n+l 

-.n. 

+1 

-1 

-1 

V12n 

'11 

12 

V22n 

21 

2̂2 

v̂ n ̂ ...v̂ n+v̂ n +̂ 2" 

V11V21*',Vnl ~V11 ™V21 

V12V22" ,vn2 ~vi2 "v22 

+̂ 12" 

"V11V21* *,vnl 

~V12V22'1*Vn2 

.n+1 
-1 V12n V22n V12n V22n* ' ,V"n2n~V12n 2̂2" "V12n V22n,"Vn2n 
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XII. APPENDIX B 

A. Coefficients of a Polynomial in {v.} 

Given a finite function of n two-valued variables the function can be 

written as a polynomial in z and z by Theorems 2 and 4. If this is done 

the contribution to the function due to a coefficient v, is 

ykzlz2"*zjzj+r**z: n (33) 

"•There z. thru z. are 0 and z. _ thru z are 1 for the row of the function 
1 J J+l n 

table with function value y,_. This term of the function in z,z variables 

can. be transformed to the function in variables {v } by the transformations 

1+v. 1-v. 
z .  =  — z .  = —. The y,_ term in variables {v.} becomes 

•J 

(l-v )(l-v )...(l-v,)(l v. 1 )...(! V ) . (34) 
•** u c --

Note that in a function table in {v.} the row of variables correspond-
J 

ing to the function value y, is -1 for v. thru v. and +1 for v. . thru v . 
k i ,] j+1 n 

Expanding 34 each term of the polynomial in {v.} of the function appears 

once and only once and has a coefficient i—- if the product of variables 
2n  

{v.}appearing in a given term is positive for the row corresponding to 
0 y> 

function value y. and tne coefficient is - — otherwise. 
£ 2

n 

Since the polynomial in z, z is made up of 2IX terms of the form 33 

then the polynomial in {v.} will be the sum of 2n terms of the form 34. 

Adding the contribution to a v polynomial term from each term of the form 

34 results in the following ecuations for the coefficients c. . of 
" i ,a 

the v.v....v term of the v matrix 
i J m 
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O
 

o
 II 1 

2n 

2n 

& 

2n 

yk 

c. = 
1 

1 

7  
Z 
k=l 

Vik v: 

i 2n 

Cij, • • • J El 
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XIII. APPENDIX C 

A. Existance of a Simple Polynomial of any Incomplete Function 

Given any incomplete function of n two-valued variables defined at m 

points, a polynomial can be written that takes on the function value at all 

defined points and is of the form 

m n 

= X ck V- (zi-} r (35) p 
5 k=l j=l 

where the function table is arrayed such that the first m points are the 

defined points. 

Proof: The function can be written in the form of z and z as 

in Theorem 2 using the function value for the first m points and zero for 

the undefined points. The resultant will be 

Pm = %(%,!) - ya52(z'7) +'"+ yA{z;=) • 

Each term p(z,z) contains each of zn,ẑ ,...,ẑ  either as such or negated. 

Replacing z. = 1-z. zives a nolynomial in zn ,z_,...,z that contains in 
J j ~ -L - n 

general every term of the form 

n z.. 
v. - n (zj " 

3=1 J 

which is every possible combination of products of {z.} plus unity. Note 

that every coefficient of a term is formed by summing and differencing 

yl'y2**"'ym for defined points. 

Since the function is undefined for points m+l,m+2,...,2n the value 

at those points is of no interest. A combination of terms can how be made 

that does not influence the value of the polynomial at defined points. 

Assume there is an undefined point that would give a first order term from 
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2.1k 
<»,)- = %k 

, » » 
This term p̂ _ of the polynomial would be 1 when the z,_ is one alone or 

f 
when any other tern containing z, is one. Since there is no interest in 

t t 
the case when z. is one alone, the z. term of the polynomial can be 

k k -
I I 

eliminated by adding the coefficient c, to every other term containing zv_. 

A similar argument can be advanced for all first order and higher terms 

corresponding: to undefined joints. Thus, all terms of ? excent those 
- ' m 

corresponding to the first m points are eliminated leaving only terms 

of the form of 35. Hotice again that the final coefficients ĉ  are a 

combination of addition and subtraction of ŷ ,ŷ ,...,ŷ . 
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XIV. APPENDIX D 

A. Uniqueness of a Simple Polynomial of any Incomplete Function 

Given any incomplete function of n two-valued variables no more than 

one polynomial of the form 

•where the first m points of the function table are the defined points, can 

be found that takes on the function value at defined points. 

C-iven a polynomial of the form 36 there must be a polynomial P_ in 

(z,z) of the form of Theorem 2 passing through the same points as ?̂ « 

Pa = * 5V?2(z'*> +""+ + um 

+ ...+ U TD (z,z) (37) 
2n 2n 

Substituting z. = 1-z. into 37 gives 
.1 

2n , n z 
?n = 2 =k n (zj> 3 (33) 

k=l j=l 

Since 36 and 38 are identities their coefficients can be equated term 

I 
by term. Note that each coefficient ĉ  is a linear function of those of 

2rl*y2' ' ' * ,ym,Um+le ' ' *,U n "fciia'fc are function values of points corresponding 

to products of the form 

< • I, 

wholly included in 

2n z., 
- TT y- ï 
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Thus, each first order term corresponding to an undefined point will 

be a linear function of at most a constant and the unknown value corres­

ponding to that point. Thus, the unknown (u,J value is uniquely determined 

by a defined value. Extending the argument to higher order terms corres­

ponding to undefined points, the only unknown (u. ) value appearing in the . 

coefficient will be the value whose point corresponds to the tern; all 

other unknowns of lower order having already been written as a function 

of known values. Thus, the new unknown is a unique function of known 

values. 

Thus a polynomial of the form 36 uniquely defines all possible func­

tion value points in terns of defined points. Thus no core than one 

polynomial of the form 3c takes on the function values at all defined points. 
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