IOWA State University

Digital Repository

Applications of real polynomials of binary variables

Wendell Beck Sander

Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Electrical and Electronics Commons

Recommended Citation

Sander, Wendell Beck, "Applications of real polynomials of binary variables " (1963). Retrospective Theses and Dissertations. 2514.
https://lib.dr.iastate.edu/rtd/2514

This dissertation has been
64-3846
microfilmed exactly as received
SANDER, Wendell Beck, 1935-
APPLICATIONS OF REAL POLYNOMIALS OF BINARY VARIABLES.

Iowa State University of Science and Technology Ph.D., 1963
Engineering, electrical

University Microfilms, Inc., Ann Arbor, Michigan

APPLICATIOMS OR REAL POLYOMIALS OF BTMAEY VARTADLES

 3%Tendell Beck Sancer

A Dissertation Submitted to the Graduate Faculty in Partial Euifiliment of The Pequirements for the Degree of DOCDOR O FITOSOPH
Meior Subject: Inectrical Engineerins

Aoproved:
Signatures have been redacted for privacy.

Iowa State University
Of Science and Technology Ames, Iowa

1963
mate of comana
Pane
I. ImTRODUCTIOM 1
in. Real polvomtals or eimary varibies 2
A. Arbitran: Functions 2
5. The 0,l Vari三bie 5
C. Change of Variables 7
D. Binary Functions 2
E. The Orthogonal Yariable 6
F. Approximation and Ieest Squares Pittine 11
c. Ircomplete Functions 18
III. IOGIC ITME REA POLMOMAL 26
A. Pepresentation of Some Common Iogic Operations 26
3. Proofs ci Theorems of Iogic 29
C. Mon-negation Logic 32
IV. WIGHTMD SUR DECISION LOGIC 36
A. Fundamental Theory 36
E. Eroothesis on Linear Separability 37
 40
A. Some Characteristics of Neimhtec Codes 40
3. Decoding Fon-weighted Cocies 41
VI. FUMCRIONAI DECODIEG 43
A. General Considerations 43
3. Square Function 43
C. Theorem Relating Binary Power and Function Fower 44
D. Segmented Approximation 45
E. Interpolation 48
F. Sine Function Example 52
G. Apolications 53
VII. PaTMERE RECOCMITIOA 55
VIII. CORCIUSIOES AMD SEMARy 56
IX. IITepatueg CITED 53
X. ACMOMLEDEETRS 61
XI. APPEMDIX A. 62
A. Orthosonality of the Variables $\left\{v_{j}\right\}$ 62
XII. APDETDIX 3 66
A. Coefficients of a Poiynomiai in $\left\{v_{i}\right\}$ 66
XIIT. APPDMDIX C 68
A. Existance of a Simple Dolvnomial of any Incomplete Function 63
XIV. APPETDIX D 70A. Uniqueness of a Simple Polyomial of any IncompleteFunction70

I. IMTRODUCTIOE:

This aissertation develops a mathematical tool and shows how this tool can be used for analysis and synthesis in a. variety of areas. As disital and analog computer technology has progressea there has been increasing interest in tie interface between analos systems (or analog nature itself) and discrete digital processors. Special cocing schemes such as reflected cinary codes and weiginted 4 -bit codes for the integers $0-9$ have been investigated $(1,26,29)$. Vethoas for translating from digital to analog and analog to digital forms have been extensively pursued (21) incluãing some investigation into decoding from aigital form to an analog representation on a function of the digital form (7,16). These interface problems have been investigated largely on an intuitive or cut-anci-iry basis.

The defining relations describing the operation of digital processors are nearly always in terms of the symbolic logic known as 3oclean algeora invented by George Boole (3) (1815-1864) and exiended by such people as Wnitenead and Russell (30). This algeora is apolicable to two-level or binary operations which lec Shannon (27) to apply the algeora to relay and switching networks which are basically two-level in nature. Since Snannon's early work there has been extensive study of Boolean algebra and its applications.

A relatively new field that is ratiner loosely connected with computer technology is the field of pattern recognition. Nany papers have been written in this field in recent years (2,14,17,19,31). Most of these schemes consider the pattern to be a pattern of white and black areas
from which a set of "characteristics" of the pattern are derived. The decision (usually linear) as to what pattern is beine observed is based on the relative values of the characteristics. The fundamental problem in all such schemes is to choose a good set of characteristics. Since most schemes translate the pattern into a finite two-valued two-dimensional matrix a seconary problem exists in getting high resolution without undue complication. Since the patterns are observed as white and black only, multitone (black-grey-wite) patterns cannct be handled effectively.

This paper investigates the application of real polymomials of binary variables to the above areas. Coleman (6) makes use of a real polynomial approach in the design of core logic which is essentially a linearly separable function problem. He considers oniy the case of a two-valued function and only fitting "complete" functions (functions specified for all possible values of the variables) with an orthogonal set of variables. This dissertation is much more general in aoproach, allowing arbitrary functions of the binary variables and considering incomplete functions.

II. REAL POLYMOMIALS OF BIMARY VARIAELES

A. Arbitrary Functions

Definition 1:

A two-valued variable is a variable x_{j} that can take on one of only two İnite values x_{j}^{1} anc x_{j}^{2} where $x_{j}^{I} \neq x_{j}^{2}$. x_{j}^{1} anc x_{i}^{2} are botin read. Definition 2:

A real polynomial of n two-valued variables is a function f such that

$$
\begin{align*}
f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) & =k_{0}+k_{1} x_{1}+i_{2} x_{2}+\ldots+i_{n} x_{n} \\
& +k_{12} x_{1} x_{2}+k_{13} x_{1} x_{3}+\ldots \tag{I}\\
& +k_{123} \ldots x_{1} x_{2} \ldots x_{n}
\end{align*}
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are two-valued variables, $k_{0}, k_{1}, k_{2}, \ldots, k_{12}, \ldots n$ are constant coefficients of the polynomial, and the indicated operations are real multiplication and real acáition.

Definition 3:

A complete function of n two-valued variables is a function defined for all possible combinations of values of the n variables. An incomplete function is a function of two-valued variables that is not complete.

Several observations can be made at this point. The Aomain of a complete function can be visualized as an n-aimensional hyper-rectangle with each vertex of the hrper-rectangle corresponding to a point of definition of the function. Thus the comain is a set of 2^{n} finite points and the function takes on a finite set of values. This paper is concerned only with functions that have finite values at all points.

Definition 4:

A set of binary variables is a set $x_{1}, x_{2}, \ldots, x_{n}$ of two-valued variables such that $x_{1}^{1}=x_{2}^{1}=x_{3}^{1}=\ldots=x_{n}^{1}$ and $x_{1}^{2}=x_{2}^{2}=x_{3}^{2}=\ldots=x_{n}^{2}$. Definition 5:

A real polynomial of binary variabies is a real polynomial of a set of two-valued varisbles where the set of two-valued varibibles is a set ồ binary variables.

Any function of two-valued variables can be represented b_{0} a finite table listing the possible combinations of values tiat the variables $\left\{x_{j}\right\}$ take on and the value of the function for each point. An example of such a table for a complete function of three two-valued variables is shown in Table 1.

Table 1. General function of three two-valued variables

x_{3}	x_{2}	x_{1}	$f\left(x_{1}, x_{2}, x_{3}\right)$
x_{3}^{1}	x_{2}^{I}	x_{1}^{1}	y_{0}
x_{3}^{1}	x_{2}^{I}	x_{1}^{2}	y_{1}
x_{3}^{1}	x_{2}^{2}	x_{1}^{1}	y_{2}
x_{3}^{1}	x_{2}^{2}	x_{1}^{2}	y_{3}
x_{3}^{2}	x_{2}^{I}	x_{1}^{1}	y_{4}
x_{3}^{2}	x_{2}^{1}	x_{1}^{2}	y_{5}
x_{3}^{2}	x_{2}^{2}	x_{1}^{1}	y_{6}
x_{3}^{2}	x_{2}^{2}	x_{1}^{2}	y_{7}

3. The 0,l Variable

Definition $6:$

The variable z_{j} is a two-valued variable such that $z_{j}^{1}=0$ and $z_{j}^{2}=1$.
It follows directly that a set of variables $\left\{z_{j}\right\}$ is a set of binary variables.

Definition 7:

The nesation of a two-valued variable x_{j} is denoted $b \overline{x_{j}}$ and is definea sucin that $\overline{x_{j}^{I}}=x_{j}^{2}$ and $\overline{x_{j}^{2}}=x_{j}^{I}$.

Theorem 1: $\quad \overline{z_{j}}=1-z_{j}$

$$
\begin{aligned}
& \text { Eroof: We heve } x_{j}^{1}=0 \text { and } z_{j}^{2}=I \text { then } \\
& I-z_{j}^{I}=I-0=I=z_{j}^{2}=\bar{I}
\end{aligned}
$$

and

$$
I-z_{j}^{2}=1-I=0=z_{j}^{I}=\overline{z_{j}^{2}}
$$

A function of three z variaioles is representec in Table 2.
Table 2. General function of z_{1}, z_{2}, z_{3}

z_{3}	z_{2}	z_{1}	$f\left(z_{1}, z_{2}, z_{3}\right)$
0	0	0	Y_{0}
0	0	1	y_{1}
0	1	0	y_{2}
0	I	I	y_{3}
1	0	0	y_{4}
1	0	1	z_{5}
1	1	0	y_{6}
1	I	1	y_{7}

Fie can now proceed with two theorems that will allow us to find a polynomial in $\left\{z_{j}\right\}$ directly.

Theorem 2: Given any finite complete function f of n variables $\left\{z_{j}\right\}$ this function can be written as

$$
\begin{align*}
f\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =\left(y_{0} \bar{z}_{1} \bar{z}_{2} \ldots \bar{z}_{n}\right)+\left(y_{1} z_{1} \bar{z}_{2} \ldots \bar{z}_{n}\right) \\
& +\left(y_{2} \bar{z}_{1} z_{2} \ldots \bar{z}_{n}\right)+\ldots+\left(y_{2} z_{1} z_{2} \ldots z_{n}\right) . \tag{2}
\end{align*}
$$

Proof: \quad Consider the \dot{k} th point $z_{a k}, z_{b k}, \ldots, z_{j k}, z_{j+1 上}, \ldots, z_{n k}$ where the values of $z_{a k}, z_{b k}, \ldots, z_{j k}$ are all 0 and the values of $z_{j+i k}, \ldots, z_{n k}$ are all I. Then consider the 2^{n} combinations of real products of z and \bar{z} variables such that none of the n variables apoear both true and negated but all variables $\left\{z_{j}\right\}$ appear either true or negated. The only one of these products that is not zero for the k th point is the proauct $\bar{z}_{a} \bar{z}_{b} \ldots \bar{z}_{j} z_{j+1} \ldots z_{n}$ and the product at that point is one, Therefore, the only term of the function 2 that is non-zero is the term
$c \bar{z}_{z} \bar{z}_{c} \ldots \bar{z}_{j} z_{j+1} \ldots z_{n}$ where c is the coefficient of this term an $\bar{\alpha}$ we have

$$
\begin{align*}
f\left(z_{a}\right. & \left.=0, z_{b}=0, \ldots, z_{j}=0, z_{j+1}=1, \ldots, z_{n}=1\right) \\
& =c \bar{z}_{a h} \bar{z}_{b x} \ldots \bar{z}_{j z^{2}} z_{j+1 \mathrm{i}} \cdots z_{n i x}=c
\end{align*}
$$

Theorem 3: Any arbitrary finite complete function f of n variabies $\left\{z_{j}\right\}$ can be uniquely represented as a polynomial in $\left\{z_{j}\right\}$.

Proof: From Theorem 1

$$
\bar{z}_{j}=1-z_{j}
$$

Therefore 2 can be written as

$$
\begin{aligned}
f\left(z_{1}, z_{2}, \ldots, z_{n}\right) & =\left[y_{0}\left(1-z_{1}\right)\left(1-z_{2}\right) \ldots\left(1-z_{n}\right)\right] \\
& +\left[y_{1} z_{1}\left(1-z_{2}\right) \ldots\left(1-z_{n}\right)\right]+\ldots
\end{aligned}
$$

$$
+\left[y_{2}{ }^{n}-1 z_{1} z_{2} \cdots z_{n}\right]
$$

which is a real polynomial in the binary variables $z_{1}, z_{2}, \ldots, z_{n}$, and can be reduced to the form of 1 .

The variables $\left\{z_{j}\right\}$ are convenient because all functions of variables $\left\{z_{j}\right\}$ may be represented as polynomials and these polynomials may be readily derived from a function table.

C. Change ci Vaxiables

Theorem 4: Any function of n variables $\left\{z_{j}\right\}$ can be transformed to a function of n two-valued varisbles $\left\{x_{j}\right\}$, by the transformetion

$$
\begin{equation*}
z_{j}=\frac{x_{j}-x_{j}^{2}}{x_{j}^{2}-x_{j}^{2}} \tag{3}
\end{equation*}
$$

and any function of n variables $\left\{x_{j}\right\}$ car be transformea to a function of n variables $\left\{z_{j}\right\}$ by the transformation

$$
\begin{equation*}
x_{j}=z_{j}\left(x_{j}^{2}-x_{j}^{I}\right)+x_{j}^{I} \tag{4}
\end{equation*}
$$

The proof follows directly from substituting for x_{j} in 3 and for z_{j} in 4 and fromi $x_{j}^{1} \neq x_{i}^{2}$.

Theorem 5: Anv finite function of n two-valued variobies $\left\{x_{j}\right\}$ car be uniquely written as a real polymomial in $\left\{x_{j}\right\}$.

Proof: Given the function it con be transformed to a function of variables $\left\{z_{j}\right\}$ by Theorem 4 and then written as a polynomial in $\left\{z_{j}\right\}$. The function can then be transformed back to the variables $\left\{x_{j}\right\}$ by the linear transformation 3 resulting in a polynomial in $\left\{x_{j}\right\}$.

D. Binery Functions

It is of interest to consider the special case of tro-valued functions of two-valued variables, that is, functions which take on one of only two possible values. Tnese special functions can be used to describe switching networks and computer circuits much as Boolean algebra is used.

In Boolean algebra it is customary to derote the two values of a binary variable as 0 and 1. Although this choice is arbitrary ana was probably chosen for convenience, it leads to direct equivalence between a real nolynomial form and a Soolean polyomial form.

Given a binary function of n variabies $\left\{z_{j}\right\}$ that takes on one of the two values 0 and i; the functional form of 2 is iaentical in form to tine P-term canonical form (5) of the Boclean representation of the function, as definea by the function taile, with logical negation analogous to variable negation of Definition 7, logicai inclusive OR analogous to the real sum, and logical product anelogous to the real proauct.

Note that the function table of such a function in real variables is indeed identical to a truth table of Boolean logic.

D. The Orthosonal Variable

Definition 8:

The variable v_{j} is a binary variable such tinat $v_{j}^{1}=-1$ ana $v_{j}^{2}=+1$.
It can be shown $(15,17)$ that a set of variables v form an orthogonal set (A proof by mathematical induction is given in Appencix A.). That is, given variables $v_{1}, v_{2}, \ldots, v_{n}$ and all possible products of these variables $v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{n}, \ldots, v_{1} v_{2} \ldots v_{n}$ the variables and all products as listed
in a function table are mutually orthogonal and are all orthogonal to a constant in the sense that

$$
\sum_{k=1}^{2^{n}} v_{j k} v_{j k}=2^{n}
$$

and

$$
\sum_{k=1}^{2^{n}} \hat{i}_{j k}=0
$$

where k is an index of rows of the function table. Thus, all terms of a real polynomial in $\left\{y_{j}\right\}$ are mutually orthosonal.

An algorithm for direct computation of the coefficients of the nolynomial in $\left\{V_{j}\right\}$ is developed in Appendix B.

The coefficient $c_{i, j} \ldots m$ of the term $v_{i} v_{j} \ldots v_{m}$ of the v polynomial is

$$
\begin{equation*}
c_{i j \ldots m}=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} v_{i k^{2} j k}^{v_{j}} \cdots v_{m i k} v_{k} \tag{5}
\end{equation*}
$$

and the constant term c_{0} is

$$
\begin{equation*}
c_{0}=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} y_{k} . \tag{6}
\end{equation*}
$$

These coefficients can also be derived from the theory of orthogonal polynomials (8) and Fourier series (6). It is interesting that joth ortinogonal polynomials and Fourier series reduce to the same system in twovalued variables. Table 3 is a function table illustrating a paxticular function and sets of variables in $\left\{z_{j}\right\}$ and $\left\{v_{j}\right\}$ including the products of the variables $\left\{v_{j}\right\}$.

Table 3. Example of a particular function in $\left\{z_{j}\right\}$ and $\left\{v_{j}\right\}$.

z_{3}	z_{2}	z_{1}	v_{3}	v_{2}	v_{1}	$\mathrm{v}_{3} \mathrm{v}_{2}$	$\mathrm{v}_{3} \mathrm{v}_{1}$	$\mathrm{v}_{2} \mathrm{v}_{1}$	$v_{3} v_{2} v_{1}$	y
0	0	0	-1	-I	-I	$+1$	$+1$	$+1$	-I	2
0	0	1	-1	-1	$+1$	+1	-1	-I	+1	1
0	I	0	-1	$+1$	-1	-1	± 1	-I	+	3
0	1	1	-1	$+1$	$+1$	-1	-I	+1	-1	I
1	0	0	$+2$	-1	-1	-1	-1	$+1$	+1	2
1	0	1	+1	-1	$+1$	-1	± 1	-1	-1	2
1	1	0	$+1$	\div	-1	+1	-I	-1	-1	3
I	1	1	$+1$	+I	+1	$+1$	+1	$+1$	$+1$	4

Fotice that the variables $\left\{v_{j}\right\}$ and their products are indeed mutuelly ortiogonal and each column v_{j} conteins an equal nuriber of ti ana -1 terms. For Taile 3 the polynomiais in $\left\{z_{j}\right\}$ and $\left\{v_{j}\right\}$ will now be developed.

The polynomial of the form 2 may be written directly.
$y=2 \bar{z}_{1} \bar{z}_{2} \bar{z}_{3}+z_{1} \bar{z}_{2} \bar{z}_{3}+3 \bar{z}_{1} z_{2} \bar{z}_{3}+z_{1} z_{2} \bar{z}_{3}+2 \bar{z}_{1} \bar{z}_{2} z_{3}+2 z_{1} \bar{z}_{2} z_{3}+3 \bar{z}_{1} z_{2} z_{3}+4 z_{1} z_{2} z_{3}$.
Substituting $\bar{z}_{j}=1-z_{j}$ छives
$\bar{j}=2\left(1-z_{1}\right)\left(1-z_{2}\right)\left(1-z_{3}\right)+z_{1}\left(1-z_{2}\right)\left(1-z_{3}\right)+3\left(1-z_{1}\right) z_{2}\left(I-z_{3}\right)+z_{1} z_{2}\left(I-z_{3}\right)$
$+2\left(1-z_{1}\right)\left(1-z_{2}\right) z_{3}+2 z_{1}\left(1-z_{2}\right) z_{3}+3\left(1-z_{1}\right) z_{2} z_{3}+4 z_{1} z_{2} z_{3}$
which reduces to

$$
\begin{equation*}
y=2-z_{1}+z_{2}-z_{1} z_{2}+z_{1} z_{3}+2 z_{1} z_{2} z_{3} \tag{7}
\end{equation*}
$$

The coefficients of the polynomial in $\left\{v_{j}\right\}$ are $c_{0}=\frac{1}{8} \sum_{k=1}^{8} y_{k}=\frac{18}{8} \quad ; \quad c_{I}=\frac{1}{8} \sum_{i=1}^{8} v_{I E} V_{k}=-\frac{2}{8}$

Thus the polynomial of Table 3 in $\left\{v_{j}\right\}$ is

$$
\begin{equation*}
y=\frac{1}{4}\left(q-v_{1}+2 v_{2}+2 v_{3}+2 v_{1} v_{3}+2 v_{1} v_{3}+v_{2} v_{3}+v_{1} v_{2} v_{3}\right) \tag{8}
\end{equation*}
$$

The equivalence oi T ane 6 can $v e$ checkē by the transformation $z=\frac{v+1}{2}$ appliec to 7. Tnis gives

$$
y=2-\frac{\left(v_{1}+1\right)}{2}+\frac{\left(v_{2}+1\right)}{2}-\frac{\left(v_{1}+1\right)\left(v_{2}+1\right)}{4}+\frac{\left(v_{1}+1\right)\left(v_{3}+1\right)}{4}+2 \frac{\left(v_{1}+1\right)\left(v_{2}+1\right)\left(v_{3}+1\right)}{8}
$$

$$
=2-\frac{1}{2} v_{1}-\frac{1}{2}+\frac{1}{2} v_{2}+\frac{1}{2}-\frac{1}{4} v_{1} v_{2}-\frac{1}{4} v_{1}-\frac{1}{4} v_{2}-\frac{1}{4}+\frac{1}{4} v_{3} v_{3}+\frac{1}{4} v_{1}+\frac{1}{4} v_{3}
$$

$$
+\frac{1}{4}+\frac{I}{4} v_{1} v_{2} v_{3}+\frac{1}{4} v_{1} v_{2}+\frac{1}{4} v_{1} v_{3}+\frac{1}{4} v_{2} v_{3}+\frac{1}{4} v_{1} \frac{I}{4} v_{2}+\frac{1}{4} v_{3}+\frac{1}{4}
$$

$$
=\frac{1}{4}\left(9-v_{1}+2 v_{2}+2 v_{3}+2 v_{1} v_{3}+v_{2} v_{3}-v_{1} v_{2} v_{3}\right)
$$

Thus the two polynomials are equivalent.

F. Approximation and Least Squares Fittins

- In some cases it is desirable to fina an approximate function of n two-valued variables that fits a given function to a. requirea desree of accuracy. For example, a complete polynomial in 10 variables could have up to 2^{10} or 1024 terms. This can be unrealistic and unnecessamy in many applications.

$$
\begin{aligned}
& c_{2}=\frac{1}{8} \sum_{k=1}^{8} v_{2 k} v_{k}=\frac{4}{8} \quad ; \quad c_{3}=\frac{1}{8} \sum_{k=1}^{8} v_{3 k} \pi_{k}=\frac{4}{8} \\
& c_{12}=\frac{1}{3} \sum_{k=1}^{8} v_{1 K} v_{2 k} V_{k}=0 \quad ; \quad c_{13} \frac{1}{8} \sum_{k=1}^{8} v_{12} v_{3 k} V_{k}=\frac{4}{8} \\
& c_{23}=\frac{1}{8} \sum_{k=1}^{8} v_{2 k} v_{3 K} z_{k}=\frac{2}{8} \quad ; \quad c_{123}=\frac{1}{8} \sum_{k=1}^{8} v_{1 k} v_{2 k} v_{3 k} v_{k}=\frac{2}{8} .
\end{aligned}
$$

A common and very desirable method of curve fitting is the method of least squares. If we denote the approximated value of the function $b y \hat{J}_{\text {ix }}$ and the true value by y_{k} then the coefficients of the least squares polynomial are the polynomial coefficients that give a minimum

$$
\begin{equation*}
\sum_{k=1}^{2^{n}}\left(y_{k}-\tilde{y}_{k}\right)^{2} \tag{0}
\end{equation*}
$$

The ortiogonal variables $\left\{v_{j}\right\}$ are garticularly convenient in least squares approximation of complete functions of two-valued variables aue to the following two theorems.

Theorem 6: Given any finite complete function f of binary variables written as a real polynomial P in the binary variables $\left\{v_{j}\right\}$; the approximate polynomial P formed by deleting one or more of the terms of P is the least squares best fitting polynomial in the remaining polynomial terms of ?

Proof: Identify each of the possible polynomial terms of E by a set of variables $p_{1}, p_{2}, \ldots, v_{j}, \ldots, 2_{2}$ arranged such that the p_{j+1} to ${ }_{2}$ n terms are those to be deleted. The corresponding coefficients are $c_{1}, c_{2}, \ldots, c_{2}{ }^{n}$. The exact function values y_{k} and the approximate function values \hat{Y}_{K} can be written as

$$
\begin{align*}
& y_{k}=c_{1} p_{1 k}+c_{2} p_{2 k}+\ldots+c_{2^{n}}^{p} 2_{k} \tag{10}\\
& \hat{y}_{k}=c_{1} p_{1 k}+c_{2}^{\prime} p_{2 k}+\ldots+c_{j}^{\prime} p_{j k}
\end{align*}
$$

where $c_{I}^{\prime}, c_{2}^{\prime}, \ldots, c_{j}^{\prime}$ are the least squares best fit polynomial coefficients for the polynomial terms $p_{1}, \underline{p}_{2}, \ldots, p_{j}$.

The squared error E is

$$
\begin{aligned}
z & =\sum_{k=1}^{2^{n}}\left(y_{k}-\hat{y}_{k}\right)^{2} \\
& =\sum_{k=1}^{2^{n}}\left(y_{k}-c_{i}^{\prime} p_{i k}-c_{2}^{\prime} p_{2 k}-\ldots-c_{i}^{\prime} z_{j k}\right)^{2} \\
& =\sum_{k=1}^{2}\left(y-\sum_{i=1}^{j} c_{i}^{\prime} p_{i k}\right)^{2}
\end{aligned}
$$

Differentiating E with respect to $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{j}^{\prime}$ and setting the result equal to zero yields a system of j equations of the form

$$
\frac{\partial E}{\partial c_{L}}=\sum_{k=1}^{2^{n}} 2\left(-y_{k} p_{L k}+p_{i k} \sum_{i=1}^{2^{n}} c_{i} p_{i k}\right)=0
$$

or

$$
\sum_{k=1}^{2^{n}} p_{i k} \sum_{i=1}^{5} c_{i}^{\prime} p_{i k}=\sum_{k=1}^{2^{n}} v_{k i k}
$$

Rearranging the summation on the left rielas

$$
\begin{equation*}
\sum_{i=1}^{j} c_{i}^{\prime} \sum_{k=1}^{2^{n}} p_{i k} p_{i k}=\sum_{n=1}^{2^{n}} y_{1} \underline{p}_{D i} \tag{II}
\end{equation*}
$$

But from the orthogonality shown in Appendix A every term
$\sum_{k=1}^{2^{n}} p_{i k} \sum_{i k}=0$ except for $i=L$ and $\sum_{i=1}^{2^{n}} p_{I k} P_{i k}=2^{n}$.
Therefore 11 reduces to

$$
2^{n} c_{I}^{\prime}=\sum_{k=I}^{2^{n}} \bar{y}_{k} \underline{D}_{L k}
$$

or

$$
c_{L}^{\prime}=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} y_{k} p_{L k}
$$

which from 5 is the ccefficient of the p_{I} term of the oricinal polynomial P. Thus

$$
c_{L}^{\prime}=c_{I}
$$

Q.E.D.

Theorem 7: Given any finite complete function f of binary variables written as e polynomial P in $\left\{v_{j}\right\}$ and approximated by deleting terms
 mation is

$$
\begin{align*}
\Xi & =c_{j+1}^{2}+c_{j+2}^{2}+\ldots+c^{2} \\
& =\sum_{k=1}^{2^{n}} y_{k}^{2}-c_{1}^{2}-c_{2}^{2}-\cdots-c_{j}^{2} \\
& =\sum_{k=1}^{2^{n}} y_{l}^{2}-\sum_{k=1}^{2^{n}} \hat{y}_{k}^{2} \tag{12}
\end{align*}
$$

Proof: Squaring equation 10 for any siven point x gives

$$
\begin{equation*}
y_{2}^{2}=\left(c_{1} p_{2 k}+c_{2} \tilde{z}_{2 k}+\ldots+c_{j} p_{j k}+c_{j+1} c_{j+1 k}+\ldots+c_{2^{n}}^{c} 2^{n_{k}}\right)^{2} \tag{13}
\end{equation*}
$$

Scuarine and sumaing i3 over all points aives

$$
\begin{aligned}
& \sum_{k=1}^{2^{n}} y_{k}^{2}=\sum_{k=1}^{2^{n}}\left(c_{1} p_{1 k} \sum_{k=1}^{2^{n}} c_{i} p_{i k}+c_{2} p_{2 k} \sum_{k=1}^{2^{n}} c_{i} v_{i k}\right. \\
& \left.+\ldots+c 2^{n^{p}} 2^{n} \sum_{k=1}^{2^{n}} c_{i} p_{i k}\right) \\
& \sum_{k=1}^{2^{n}} c_{1} p_{i k} \sum_{k=1}^{2^{n}} c_{i} p_{i k}+\sum_{k=1}^{2^{n}} c_{2}{ }^{n} 2 k \sum_{k=1}^{2^{n}} c_{i} p_{i k}+\ldots+\sum_{k=1}^{2^{n}} c_{2^{n}}{ }^{n} 2^{n}=\sum_{k=1}^{2^{n}} c_{i} \bar{p}_{i k}
\end{aligned}
$$

Rearranging the summations gives

$$
\begin{aligned}
\sum_{k=1}^{n} y_{k}^{2} & =\sum_{k=1}^{2^{n}} c_{1} c_{i} \sum_{k=1}^{2^{n}} p_{i n} p_{i k}+\sum_{i=1}^{2^{n}} c_{2} c_{i} \sum_{k=1}^{2^{n}} v_{2 k} n_{i k} \\
& +\ldots+\sum_{k=1}^{2^{n}} c_{2^{n}} c_{i} \sum_{i=1}^{2^{n}} \sum_{2} n_{k} p_{i k}
\end{aligned}
$$

But

$$
\sum_{i=i}^{2^{n}} \underline{p}_{1 k_{i k}^{p}}=\left\{\begin{array}{l}
2^{n} ; i=1 \\
0 ; i \neq 1
\end{array},\right.
$$

Thus,

$$
\begin{equation*}
\sum_{i=1}^{\sum_{i}^{n}} y_{i}^{2}=c_{1}^{2}+c_{2}^{2}+\ldots+c^{2} n \tag{14}
\end{equation*}
$$

In similar fashion

$$
\hat{y}_{\underline{K}}=\left(c_{1} p_{1 k}+c_{2} \underline{v}_{2 k}+\ldots+c_{j}{ }_{j i k}\right)
$$

Then

$$
\begin{equation*}
\sum_{k=1}^{2^{n}} \hat{y}_{k}^{2}=c_{I}^{2}+c_{2}^{2}+\ldots+c_{j}^{2} \tag{15}
\end{equation*}
$$

How

$$
E=\sum_{k=1}^{2^{n}}\left(y_{k}-\hat{y}_{\hat{k}}\right)^{2}
$$

and from Theorem 6

$$
z=\sum_{k=1}^{2^{n}}\left(c_{1} v_{j k}^{j}+c_{2^{2}} 2 k+\ldots+c_{j^{p} j k}+c_{j+1} p_{j+1 k}\right.
$$

$$
\begin{aligned}
& \left.+\ldots+c_{2^{n}{ }_{2}^{n} n_{n}}-c_{1} \sum_{1 k}-c_{2} v_{2 k}-\cdots-c_{j} n_{j k}\right)^{2} \\
& =\sum_{k=1}^{2^{n}}\left(c_{j+1}{ }_{j}+1 k+c_{j+2}{ }^{p} j+2 k^{+}+\ldots+c_{2} n^{2} n_{k}\right)^{2}
\end{aligned}
$$

Which proceecing as from 13 to 14 rielas

$$
E=c_{j+i}^{2}+c_{j+2}^{2}+\ldots+c_{2^{n}}^{2}
$$

an from 14 gives

$$
z=\sum_{i=1}^{2^{n}} y_{i}^{2}-c_{i}^{2}-c_{2}^{2}-\cdots-c_{j}^{2}
$$

snd from 15 gives

$$
=\sum_{i=1}^{2^{n}} y^{2}-\sum_{n=1}^{2^{n}} r_{k}^{2}
$$

Theorems 6 anc 7 show that a complete function of binary varicioles can be approxinated by a least squares best fit by writins the function as a polynomiai in $\left\{v_{j}\right\}$ and cropring terms. The aproximation error can be reā̃ily founa by equation 12.

Alnough Theorem 6 gives a least square best fit for polynomials in $\left\{\mathrm{v}_{\dot{j}}\right\}$ the results can be extended to certain important cases of polmomials of any two-value $\dot{\alpha}$ variacles by Theorem \mathcal{E}.

Definition 9:

A real polynomial of two-valued variables $\left\{x_{j}\right\}$ is of order 0 if there are no terms of the zolynomial involving more than 0 variebles of $\left\{x_{j}\right\}$.

Theorem 8: Given a finite complete function of two-valued variables $\left\{x_{j}\right\}$ the ieast squares best fitting polynomial of a fom allowing all terms of order less than 0 and any or all of the terms of oràer omay
be found by fincing the least squares best fitting polyomiel in $\left\{v_{j}\right\}$ with the corresponding terms (i.e. allowing all tems of order less than ona. the same terms of order o with x_{j} revlaced by v_{j}, and applying the translation

$$
\begin{equation*}
x_{j}=\frac{1}{2}\left[v_{i j}\left(x_{2 j}-x_{1 j}\right)+x_{1 j}+x_{2 j}\right] \tag{16}
\end{equation*}
$$

Proof: Since the transformation 16 is a simple translation and constant expansion, every term of order o in the axproximatins polynomial in $\left\{v_{i}\right\}$ will give no terms nisiner than o in the transformed nolynomial and only these terms of oraer 0 in $\left\{x_{j}\right\}$ corresconcing to the terms of order 0 in $\left\{v_{j}\right\}$. Therefore, the transformation of the approximating poljnomia $]_{\text {in }}\left\{\mathrm{v}_{j}\right\}$ allowing a set of terms as describea in the theorem will give an anproximating polynomial in $\left\{x_{j}\right\}$ allowing the correspondine terms.

The proci goes now by contradiction. Assume that there exists an approximating polynomial P_{x} in $\left\{x_{j}\right\}$ allowinz a given set of terms of order o but none ingher that is a better least scuares fit tran found by the procedure of the theorem. Then the \bar{E}_{X} can be transformed to a polynomial P_{v} in $\left\{v_{j}\right\}$ by the transformation

$$
\begin{equation*}
v_{j}=\frac{2 x_{j}-x_{1 j}-x_{2 j}}{x_{2 j}-x_{I j}} \tag{17}
\end{equation*}
$$

P_{v} will have no terms of order greater then 0 and only terms of oraer 0 corresponding to terms of order 0 in P_{X}. But the approximation in $\left\{v_{j}\right\}$ of the theorem is the best Ieast squares fit in those terms, therefore, P_{v} cannot de beiter, contradicting the assumption of this proof.

The type of truncation implied by Theorem 8 is very useful since
well-benavea functions tend to have the smallest coefficients on the highest order terms.

G. Incomplete Functions

The discussion up to now has concerned complete functions, that is, functions that are defined for every possible combination of variables. A set of n two-valued variables cartake on exactly 2^{n} possible combinations or points in n-space so tiat a domain is inherently implied. Fowever, a particular function may simply be not defined for some of these possiole points. Table 4 shows s partially specified or incomplete function of 3 variables z_{1}, z_{2}, z_{3} for which only five of the eight points are defined.

Table 4. An incomplete Iunction of z_{1}, z_{2}, z_{3}

z_{3}	z_{2}	z_{I}	$f\left(z_{1}, z_{2}, z_{3}\right)$
0	0	0	y_{0}
0	1	0	y_{2}
0	1	1	y_{3}
1	0	0	y_{4}
I	1	1	y_{7}

There are an infinite number of polynomials in z_{1}, z_{2}, z_{3} that will pass through these points each giving a aifferent set of values to the uncefined points. Thus, there is no satisfactory single polynomial tiat can properiy represent such a function. There are a couple of polynomials that are of interest related to this problem. One is a simple polynomial
passing tinrough the points and the other is the least squares best fitting polynomial.

A simple nolynomial can be written for an incomplete function that is independent of the undefined points. This is show in seneral in Angenaix C but a simple illustration will suffice to demonstrate minat nappens.

Consider the three variable function table of Teble 5. All function values at aefined points are symolized by and at undefined ooints bu u. Tajle 5. 4 complete tajie of an incomplete function

${ }^{2} 3$	z_{2}	${ }^{\text {a }}$	$r\left(z_{1}, z_{2}, z_{3}\right)$
0	0	0	0
0	0	I	u_{1} (uncerined)
0	I	0	y_{2}
0	I	2	$\ddot{3}_{3}$
1	0	0	${ }_{4}$
1	0	1	u_{5} (undefineci)
1	1	0	u_{6} (uncefinea)
1	1	I	${ }_{7}$

A function in z and \bar{z} can be written inclucing the undefined points as follows

$$
\begin{aligned}
f\left(z_{1}, z_{2}, z_{3}\right) & =y_{0} \bar{z}_{1} \bar{z}_{2} \bar{z}_{3}+u_{1} z_{1} \bar{z}_{2} \bar{z}_{3}+y_{2} \bar{z}_{1} z_{2} \bar{z}_{3}+y_{3} z_{1} z_{2} \bar{z}_{3} \\
& +y_{4} \bar{z}_{1} \bar{z}_{2} z_{3}+u_{5} z_{1} \bar{z}_{2} z_{3}+u_{6} \bar{z}_{1} z_{2} z_{3}+y_{7} z_{1} z_{2} z_{3}
\end{aligned}
$$

Substitutine $\bar{z}_{j}=1-z_{j}$ and grouping terms cives

$$
\begin{align*}
f\left(z_{1} z_{2} z_{3}\right) & =y_{0}+z_{1}\left(u_{1}-y_{0}\right)+z_{2}\left(y_{2}-y_{0}\right)+z_{3}\left(y_{4}-y_{0}\right) \\
& +z_{1} z_{2}\left(y_{3}-y_{2}-u_{1} y_{0}\right)+z_{1} z_{3}\left(u_{5}-y_{4}-u_{1} y_{0}\right) \tag{18}\\
& +z_{2} z_{3}\left(u_{6}-y_{4}-y_{2} y_{0}\right)+z_{1} z_{2} z_{3}\left(y_{7}-u_{6}-u_{5} y_{4} y_{2} u_{1}-y_{0}\right)
\end{align*}
$$

If the uncefined points are treated as "pronioited" or not allowed then the following is true:

The z_{1} term exists if ana only if the $z_{1} z_{2}, z_{1} z_{3}$, or $z_{1} z_{2} z_{3}$ and $z_{1} z_{2}$ and $z_{1} z_{3}$ terms exist. Thus, the coefficient of the z_{2} term con be dropped if it is added to the $z_{1} z_{2}$ and $z_{1} z_{3}$ terms ana subtracte \dot{a} from the $z_{1} z_{2} z_{3}$ term.

The $z_{1} z_{3}$ term exists if and only if the $z_{1} z_{2} z_{3}$ term exists, thus, the coefficient of $z_{1} z_{3}$ can be adaced to tine ccerficient of $z_{1} z_{2} z_{3}$ and the $z_{1} z_{3}$ term droped. The $z_{2} z_{3}$ term can be handled similerly.

Performing these groupings on 18 gives

$$
\begin{aligned}
f\left(z_{1}, z_{2}, z_{3}\right) & =y_{0}+z_{2}\left(y_{2}-y_{0}\right)+z_{3}\left(y_{1}-y_{0}\right)+z_{1} z_{2}\left[y_{3}-y_{2}-u_{1}\right. \\
& \left.+y_{0}+\left(u_{1}-y_{0}\right)\right]+z_{1} z_{2} z_{3}\left[y_{7}-u_{6}-u_{5}-v_{3}+y_{4}+y_{2}+u_{1}\right. \\
& -y_{0}+\left(u_{6}-y_{4}-y_{2} y_{0}\right)+\left(u_{5}-y_{4}-u_{1} y_{0}\right)+\left(u_{1}-y_{0}\right) \\
& \left.-\left(u_{1}-v_{0}\right)\right]
\end{aligned}
$$

which reduces to

$$
\begin{align*}
f\left(z_{1}, z_{2}, z_{3}\right) & =y_{0}+z_{2}\left(y_{2}-v_{0}\right)+z_{3}\left(y_{4}-y_{0}\right)+z_{1} z_{2}\left(y_{3}-y_{2}\right) \tag{19}\\
& +z_{1} z_{2} z_{3}\left(y_{7}-\bar{y}_{3}-y_{4}+y_{0}\right)
\end{align*}
$$

The function 19 passes through the defined points of Table 5 and the coefficients are independent of the uncefined function values. Of course if any point of undefined value is substituted in 19 some definite number
will result but this number if a function of the function values at defined points.

The next theorem is a significant property of this simple function.
Theorem 9: Given any incomplete function of n two-vaiued variables defined at n points; one and only one polynomial in $\left\{z_{j}\right\}$ of the form

$$
\begin{equation*}
p_{s}\left\{z_{j}\right\}=c_{1} p_{1}+c_{2} p_{2}+\ldots+c_{i} p_{i} \tag{20}
\end{equation*}
$$

passing through the defined points, can be found. The $\left\{c_{i}\right\}$ in equation 20 are constant coefficients and $\left\{p_{i}\right\}$ are found from

$$
p_{i}=\prod_{j=1}^{n}\left(z_{j}\right)^{z_{j k}}
$$

where the i index represents the i th defined point and $z_{j x}$ is the value of z_{j} for the i th derined point. Thus, E_{s} is a polynomial that has, in general, n terms.

Proof: The existance of 20 is show in general in Appendix C and the example above ố Table 5. The unioueness of 20 is shom in general in Appenaix D and is illustrated by the following example using Table 5. Any polynomial in z_{j} represents unicuely (from Theorem 3) some comఇlete function say that of Table 5. This function can be written as

$$
\begin{align*}
p_{s}\left(z_{1}, z_{2}, z_{3}\right) & =y_{0} \bar{z}_{1} \bar{z}_{2} \bar{z}_{3}+u_{1} z_{1} \bar{z}_{2} \bar{z}_{3}+y_{2} \bar{z}_{1} z_{2} \bar{z}_{3}+y_{3} z_{1} z_{2} \bar{z}_{3} \tag{21}\\
& +y_{4} \bar{z}_{1} \bar{z}_{2} z_{3}+u_{5} z_{1} \bar{z}_{2} z_{3}+u_{6} \bar{z}_{1} z_{2} z_{3}+\bar{y}_{7} z_{1} z_{2} z_{3}
\end{align*}
$$

and also from 20

$$
\begin{equation*}
p_{5}\left(z_{1}, z_{2}, z_{3}\right)=c_{1}+c_{2} z_{2}+c_{3} z_{3}+c_{4} z_{1} z_{2}+c_{5} z_{1} z_{2} z_{3} \tag{22}
\end{equation*}
$$

Substitutinz $\bar{z}_{j}=1-z_{j}$ in 21 gives

$$
\begin{align*}
P_{5}\left(z_{1}, z_{2}, z_{3}\right) & =y_{0}+z_{1}\left(u_{1}-y_{0}\right)+z_{2}\left(y_{2}-y_{0}\right)+z_{3}\left(y_{4}-y_{0}\right) \\
& +z_{1} z_{2}\left(y_{3}-v_{2}-u_{1}+y_{0}\right)+z_{1} z_{3}\left(u_{5}-y_{4}-u_{1}+y_{0}\right) \\
& +z_{2} z_{3}\left(u_{6}-y_{4}-y_{2}+y_{0}\right)+z_{1} z_{2} z_{3}\left(y_{7}-u_{6}-u_{5}-v_{3}\right. \\
& \left.+y_{4}+y_{2}+u_{1}-v_{0}\right) \tag{23}
\end{align*}
$$

Since 22 and 23 are identities then they may be equated term by tem.

$$
\begin{aligned}
& c_{1}=r_{0} \\
& 0=u_{1}-y_{0} ; \quad u_{1}=y_{0} \\
& c_{2}=y_{2}-y_{0} \\
& c_{3}=y_{4}-v_{0} \\
& c_{4}=y_{3}-\bar{x}_{2}-z_{2}+y_{0} \\
& 0=u_{5}-y_{4}-u_{7}+y_{0}=u_{5}-\bar{y}_{4}-y_{0}+y_{0}=u_{5}-v_{4} ; u_{5}=y_{4} \\
& 0=u_{6}-u_{4}-v_{2}+y_{0} ; u_{6}=y_{4}+y_{2}-v_{0} \\
& c_{5}=y_{7}-u_{6}-u_{5}-y_{3}+\bar{y}_{4}+y_{2}+u_{2}-y_{0} \\
& =y_{7}-y_{4}-\bar{v}_{2}+y_{0}-x_{4}-y_{3}+\bar{v}_{4}+y_{2}+y_{0}-v_{0} \\
& =x_{7}-y_{4}-y_{3}+y_{0}
\end{aligned}
$$

Thus $P_{s}\left(z_{1}, z_{2}, z_{3}\right)$ escribes the complete function of Table 6. Every complete function value of $P_{s}\left(z_{1}, z_{2}, z_{3}\right)$ is unicuely determined. Therefore, $P_{s}\left(z_{1}, z_{2}, z_{3}\right)$ is unique from the uniqueness of polymomials of complete functions.

Table 6. Example of a simple polynomiel p_{s}

This means that every other zolynomiai nassing throum the definea points must have in one or more of its non-zero terms a procuct

$$
E_{I}=\prod_{j=1}^{n}\left(z_{j}\right)^{z_{j i}}
$$

where \dot{j} is an index corresponding to an undefined point of the incompete function.

Another important polynomial reiating to an incomplete function is the least squares best fitting approximation. An incomplete function can be thought of as a function defined on all of a set of recucea points. In general there is no orthogonal representation of the reduced points, therefore, there is generally no polynomial that car be written that can be reduced to a least squares best fit simply by dropping terms. Thus, finding a least squares best fit becomes a far more difficult task and translating to $\left\{v_{j}\right\}$ has no great aivantage. The general avproach to finding the least squares best fit is outlined below for generalized
variables $\left\{x_{j}\right\}$.
Given a finite incomplete function of two-valued variables $\left\{x_{j}\right\}$ defined For a points the least squares best fit of the form

$$
\hat{y}_{k}=c_{1} p_{1}+c_{2} p_{2}+\ldots+c_{M m} p_{m}
$$

where $\underline{x}_{1}, p_{2}, \ldots, p_{m}$ are the allowable product terms (incluaing possibly a constant) of $\left\{x_{j}\right\}$ mav be found as follows

$$
\begin{aligned}
E & =\sum_{k=1}^{G}\left(\eta_{k}-\hat{v}_{k}\right)^{2} \\
& =\sum_{k=1}^{G}\left(y_{k}-c_{1} p_{1 k}-c_{2} p_{2 k}-\cdots-c_{m} p_{m}\right)^{2}
\end{aligned}
$$

Differentiating with respect to $c_{1}, c_{2}, \ldots c_{m}$ and setting the results equal to zero yields the system of $L=1,2, \ldots, m$ equations in m unknoms of the form

$$
c_{1} \sum_{\mathrm{k}=1}^{c} x_{1 k} x_{L i k}+c_{2} \sum_{k=1}^{q} x_{2 k} x_{L k}+\ldots+c_{=1} \sum_{k=1}^{G} x_{m k} x_{i, k}=\sum_{i=1}^{G} x_{I k} y_{k}
$$

This system can usually be solved for $c_{1}, c_{2}, \ldots, c_{m}$ to give the least squares polynomial coefficients ciesired. Note that to find a best 10 term polynomial requires solving a system of 10 linear equations. This processing is fairly amenable to a digital computer solution. In practice it turns out that using a system of variables $\left\{z_{j}\right\}$ tends to give a fairly simple set of numbers for the system of equations.

The preceding material provides a firm foundation for the applications that follow. The most significant conclusions are:

1) Any complete finite function of two-valued variables can be uniquely written as a polymomial in any set of two-valued variables.
2) The polynomial coefficients may be readily determined by the methods of Theorem 3 or equations 5 and 6 then transformed to any set of two-valued variabies.
3) The orthogonality of the variable $\left\{v_{j}\right\}$ lea.ds to finding least squares best fitting polynomials of complete functions.
4) Any incomplete function can be written unicuely in the form of Theorem 9.

ITI. LOCIC UIT REA DOLMOMAS

A. Pepresentation of Some Comon Logic Operations

It has been show that the truti: table or logic function of Booleen aleebre can be represented as a binem function of binaxy veriables. A compilation of some comon lonic operations representea as solvnomials in the variables $\left\{z_{j}\right\}$ and $\left.f_{j}\right\}$ follow. $\left\{{ }_{j}\right\}$ is usea as the logical symbol. $f\left\{v_{j}\right\}$ has velue \div I for $\left\{\left\{w_{i}\right\}=1\right.$ enc -1 for $\left\{w_{i}\right\}=0$ onc $f\left\{z_{j}\right\}$ has value

I. Losical procuct $H_{1} \cdot \mathrm{~V}_{2}($ (abie T)

$$
\begin{aligned}
& v_{z}\left(z_{1}, z_{2}\right)=z_{1} z_{2} \\
& z_{v}\left(v_{1}, v_{2}\right)=\frac{1}{2}\left(v_{1}+v_{2}+v_{1} v_{2}-1\right)
\end{aligned}
$$

Table 7. Lozical product truth table

${ }^{7} 2$	${ }^{3}$	$f\left(W_{2}, W_{Q}\right)$
0	0	0
0	2	0
1	0	0
1	1	1

$$
\begin{aligned}
& f_{z}\left(z_{1}, z_{2}\right)=z_{1}+z_{2}-z_{1} z_{2} \\
& f_{V}\left(v_{1}, v_{2}\right)=\frac{1}{2}\left(1+v_{1}+v_{2}-v_{1} v_{2}\right)
\end{aligned}
$$

Table 8. Logical inclusive OE truth table

$$
\begin{array}{ccc}
0 & \bar{w}_{1} & \tilde{r}_{1}\left(\bar{w}_{2}, w_{2}\right) \\
\hline 0 & 0 & 0
\end{array}
$$

Table 8. Continued

${ }_{2}$	${ }^{W}$	$f\left(H_{1}, W_{2}\right)$
0	1	i
1	0	I
1	2	2

$$
\begin{aligned}
& i_{z}\left(z_{1}, z_{2}\right)=z_{1}+z_{2}-2 z_{1} z_{2} \\
& f_{v}\left(v_{i}, v_{2}\right)=-v_{1} v_{2}
\end{aligned}
$$

Toble g. Lozicel exclusive on truth table

V_{2}	V_{1}	$r\left(v_{1}, w_{2}\right)$
0	0	0
0	1	i
I	0	1
I	1	0

4. Negation \bar{w} (mabie 10)

$$
\begin{aligned}
& f(z)=\vec{z}=1-z \\
& r(v)=\bar{v}=-v
\end{aligned}
$$

Table 10. Jegation truth toble

H	$f(i)=\overline{7}$
0	1
1	0

$$
f_{2}\left(z_{1}, z_{2}, z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}+z_{\widehat{2}} z_{3}-2 z_{1} z_{2} z_{3}
$$

$$
\mathrm{m}_{\mathrm{v}}\left(\mathrm{v}_{1}, v_{2}, v_{3}\right)=\frac{1}{2}\left(v_{1}+v_{2}+v_{3}-v_{1} v_{2} v_{3}\right)
$$

Table 1l. Majority Iogic truth table

w_{3}	w_{2}	w_{1}	$f\left(w_{1}, w_{2}, w_{3}\right)$
0	0	0	0
0	0	I	0
0	1	0	0
0	1	1	I
1	0	0	0
I	0	I	I
1	1	0	I
1	1	I	1

$f\left\{x_{j}\right\}=1$ at point F if $\left\{\mathrm{m}_{\mathrm{i} k}\right\}$ contains on oid number of l's ancu
$f\left\{w_{j}\right\}=0$ if $\left\{w_{j k}\right\}$ contains in even number of $z ' s$.
$f\left\{v_{j}\right\}=-v_{I} v_{2} \cdots v_{n}$
$f\left\{z_{j}\right\}=\bmod \& \sum_{j=I}^{n} z_{i}$
7. General logical proūct $w_{1} \cdot W_{2} \cdot{ }_{3} \cdot \ldots$. . i_{n}

A\{ $\left\{\bar{w}_{j}\right\}=1$ if $\bar{w}_{1}, w_{2}, \ldots, w_{n}$ are all 1 and $f\left\{w_{j}\right\}=0$ otherwise.
, $f\left\{z_{j}\right\}=z_{1} z_{2} \cdots z_{n}$
The last two lofic operations are of particular interest because they zive a logic intercretation to the real procucts in $\left\{v_{i}\right\}$ ana $\left\{z_{j}\right\}$. The functions above are written so that the two values of the functions are the same as the values of the dependent variacies and have a direct correspondence to the logic variable and functions. Given s.
function f_{1} of two other losic functions f_{2} and f_{3}

$$
f_{1}\left(f_{2}, f_{3}\right)
$$

and given the corresponding polymials as above in z and $v ; f_{z_{1}},{ }_{z_{2}},{ }^{f} z_{3}$ and $\hat{I}_{v_{1}}, \vec{r}_{v_{2}}, \vec{i}_{v_{3}}$, then

$$
f_{z_{1}}\left(f_{z_{2}}, f_{z_{3}}\right)
$$

anci

$$
f_{v_{1}}\left(f_{v_{2}}, v_{v_{3}}\right)
$$

rili correspone to

$$
f_{I}\left(\tilde{f}_{2}, \tilde{f}_{3}\right)
$$

such that wher $f_{1}\left(f_{2}, f_{3}\right)=0, f_{z_{1}}\left(f_{z_{2}}, f_{z_{3}}\right)$ will equal 0 ana $f_{v_{1}}\left(f_{v_{2}}, f_{v_{3}}\right)$
 $f_{v_{I}}\left(I_{v_{2}}, f_{v_{3}}\right)$ vill equal $+i$
3. Prooís of Theorems of Lozic

The cspability of replacing logic operations with polynomial functions leads directiy to $¥ r o o f$ of Boolean logic theorems in temm of real variables. Ey applyine more matnematical rizor to tais aiscussion it shouic be possible to satisiactorily develon the basis and proverties of Joolean elaeora from real variable theory. It is not the intent of this paper to go that far. $\operatorname{rowever,~some~samples~of~proofs~are~of~interest.~A~couple~}$ of theorems on powers of the variables $\left\{z_{j}\right\}$ and $\left.f_{j}\right\}$ are needed first.

Theorem IO: $\quad\left(z_{j}\right)^{n}=z_{j} ; n 1,2, \ldots$
Proor: From derinition $6 z_{i}^{i}=0$ and $z_{j}^{2}=1$. Thus

$$
\left(z_{j}^{I}\right)^{n}=0=z_{j}^{I}
$$

and

$$
\left(z_{j}^{2}\right)^{n}=I=\left(z_{j}\right)^{n}
$$

Since this eximusts all zossible values 0 ? z_{j} the theorem follows.
Theorem II: $\quad\left(v_{j}\right)^{2 n}=I$ and $\left(v_{j}\right)^{2 n+1}=v_{i} ; n=1,2, \ldots$

$$
\text { Troof: } \quad \text { Fom ierinition } \theta \frac{1}{i}=-1 \text { and } v_{i}^{2}=+2 \text {. }
$$

$$
\left(v_{j}^{I}\right)^{2 n}=(-1)^{2 n}=1
$$

ma

$$
\left(v_{j}^{2}\right)^{2 n}=(2)^{2 n}=1 .
$$

Since this exicusts all possioie vilues of γ_{0} then $\left(v_{0}\right)^{2 n}=1$.

$$
\left(v_{i}^{1}\right)^{2 n+1}=(-1)^{2 n+1}=-1=\frac{1}{3}
$$

anc

$$
\left(v_{j}^{2}\right)^{2 n+1}=(+1)^{2 n+i}=+i=v_{j}^{2}
$$

mus, $\left(\mathrm{v}_{\mathrm{j}}\right)^{2 \mathrm{n}+1}=\mathrm{v}_{i}$.
The following are some fundamental (5) theorems of Eooleen aleetra.
J. Theorems on complementation
3. $\bar{T}_{I} \forall \overline{F_{I}}=2$

Writing the left hand side in terna of z_{1} and \bar{z}_{1} cives

$$
z_{1}+\bar{z}_{1}-z_{1} \bar{z}_{1}
$$

Bubstitutins $\bar{z}_{I}=I-z_{I}$ ©ives

$$
z_{I}+\left(I-z_{I}\right)-z_{I}\left(I-z_{I}\right)
$$

which equals

$$
z_{1} \div 1-z_{1}-z_{1}+\left(z_{1}\right)^{2}
$$

Since $\left(z_{1}\right)^{2}=z_{1}$ we have

$$
z_{1} \div 1-z_{1}-z_{1}+z_{1}=1
$$

.....
D. $\bar{x}_{2}=0$

Tritine $w_{2} \bar{\sigma}_{I}$ as a polnomiel ir z_{I} gives

$$
z_{I} \bar{z}_{1}=z_{I}\left(1-z_{I}\right)=z_{I}-z_{I}^{2}=0 \quad .
$$

2. Weorem on nouble rewation $\overline{\sigma_{I}}=V_{2}$

Writint in terms or z_{1} gives

$$
\left(\bar{z}_{1}\right)=\left(\overline{1-z_{1}}\right)=1-\left(\bar{i}-z_{I}\right)=z_{i}
$$

3. De:oram's theorers
a. $\overline{\overline{T V}_{2}}=\bar{W}_{2} \cdot \bar{T}_{2}$

Mritina the left hena sias in tems on z_{1}, z_{2} fives

$$
\begin{aligned}
\left(\overline{z_{1}+z_{2}-z_{1} z_{\varepsilon}}\right) & =1-\left(z_{1}+z_{2}-z_{1} z_{2}\right) \\
& =1-z_{I}-z_{2} \div z_{1} z_{2} \\
& =\left(I-z_{1}\right)\left(1-z_{2}\right) \\
& =\bar{z}_{1} \bar{z}_{2}
\end{aligned}
$$

anci $\bar{z}_{\bar{i}} \bar{z}_{2}$ corresponcs to $\bar{w}_{1} \cdot \bar{w}_{2}$.
i. $\bar{w}_{1} \bar{v} \bar{w}_{2}=\overline{w_{1} \cdot W_{2}}$

Friting the left hanc side as a polynomial in z_{1}, z_{2}, z_{3} fives

$$
\begin{aligned}
\bar{z}_{1}+\bar{z}_{2}-\bar{z}_{1} \bar{z}_{2} & =\left(1-z_{1}\right)+\left(1-z_{2}\right)-\left(1-z_{1}\right)\left(1-z_{2}\right) \\
& =1-z_{1}+1-z_{2}-1+z_{1}+z_{2}-z_{1} z_{2} \\
& =1-z_{1} z_{2} \\
& =\overline{z_{1} z_{2}}
\end{aligned}
$$

4. Theorem on cistribution $\left(\sigma_{1} V w_{2}\right) \cdot\left(w_{3}, v_{3}\right)=w_{2} \quad V_{2} v_{3}$ Miting the lert hand side as a polynomal in z_{1}, z_{2}, z_{3} aives

$$
\left(z_{1}+z_{2}-z_{1} z_{2}\right)\left(z_{1}+z_{3}-z_{1} z_{3}\right)=z_{1}^{2}+z_{1} z_{2}-z_{1}^{2} z_{2} \div z_{1} z_{3}
$$

which equais

$$
z_{1}^{2}+z_{1} z_{2}-z_{1}^{2} z_{2}+z_{1} z_{3} \div z_{2} z_{3}-z_{2} z_{2} z_{3}-z_{1}^{2} z_{3}-z_{1} z_{2} z_{3}+2_{1}^{2} z_{2} z_{3}
$$

which reduces to

$$
z_{1}+z_{1} z_{2}-z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}-2 z_{1} z_{2} z_{3}-z_{1} z_{3} \div z_{1} z_{2} z_{3}
$$

which equels

$$
z_{1}+z_{2} z_{3}-z_{1} z_{2} z_{3}=z_{2}+z_{2} z_{3}-z_{1}\left(z_{2} z_{3}\right)
$$

wich can be witter as tice Eoolen equation $"_{i} V \%_{2} \cdot{ }_{3}$.

C. Bon-neaztion Jocic

The polynomian representation or arg Bocleen function cen be readiy used eirectly to develow a logic circuit. note jat trenegetions of the variebles are not necessary in such a syster wereas the usual zoclean Icgic expressions involve negation.

A circuit fon provicing e iogical furction of several lacicai veridoles can be most easily seen from the polyromial in $\left\{z_{i}\right\}$. Such a function

$$
x\left\{z_{j}\right\}=c_{1} p_{1}+c_{2} p_{2}+\ldots+c_{n} p_{n}
$$

can be instrumentea by a logic circuit that will accept botin positive anc negative weightec inputs for the positive and negative coefficients. It should be a type of threshold circuit thet will give an output voltage corresponding to a logical I when the sum of the inputs (sian considered) are greater than any number corresponaing to the voltage value (loading
considered) between logicei 0 and 1 . The inputs con be mede up by cenerating the a terms and using appropriate weichtina resistors. The g terms can be generated readily by stancard logical AD sircuits since the losical product and real product are of the same form.

Such a logic srstem has some rather interesting zroperties. Since the sum of the terms nominsliy takes on only one of two values the zear suminc values are well controlled. Jince there is a aistinct äfference between the two sums the ectual threshoid of the sumine-swithins circuit is noncritical. Another interesting property is that some of the reighted tems can be cuite far off Eron tine nominal or missing altosether with a high probability of the circuit givine the corcect output. fit is really only necessery that the logic function be inearly sevarocle (see part IV) in the remaining p terms of the polyomial. Thus, losic circuits cen be mede us using anded tems of the input veriscles and so veigntec sumation into a threshola-switching circuit with asich probability of giving the prover output even with failure of one or more parts of the circuit. This could be an important advantafe ir aizitel processors vith extreme reinability requirements. In general, the polyomiei instrumentation will be more complex then nomai Bolean logic instrumentation although not requiring neatea veriebles can ve a sirglifinz factor in zant ceses.

A very interesting property of the $\left\{z_{j}\right\}$ polynomial fore of a Soolen function that may have value in some cases is that the real sumntion of terms may be reniaced oy moduio-2 sumation.

Theorem 12: Given ary complete function of two-valued variables writiter as a polynomiai in $\left\{z_{j}\right\}$ witin integer function values, all coefficients of the polynomial will be intezers.

Proon: Appencix C show thent the coerficients of tie polynonial in a wre found by surs na differences of function velues. If the function values are integers then the coefficients must be intesers.

Theorem 13: Given any tro-vaiued complete function on two-valued Veriables with function value 0 and I ant written es a zolyomial in $\left\{z_{j}\right\}$,
 oun inteser coffincients ank those coerficients set acuni to one.

Proof: Trow Theorew 22 an conricients must be intecers. Eince the 2 terns are fil either zero on one, the sum and biference of coerficients will ado to ony one or zero or one. dince zero is even and one is odi it is necessary only to ietermine it the sum and diterence on the coenticients as syeciried oy the terrs is even on ode minch can be founc by a mocuion sumation of the terms. Sirce on even numen is zero
 terms with even coefricients ray be eiminated ma ode valued coeficients ray be reünced to +1 .
 goolean function except that modulo-2 acition (wich is the logical odiparity (unction) is not too easy to instrument as a perallel oneration (16,10) although it is quite simple as a seriel operation (16). It is significant thet the temus still do not invoive negated variabies. This discussion leads to the following theorem in losic tems.

Theorem 3. Any Doolean function can be written es on caca-parity function of some set of prociucts of the non-nezatea variables.

It seems likely that this function is unique but the proof is not obvious.

Although other locic systems are possible, the tro described here seem the most likely to have practical value. The first because it is notentially a niçin reliability system in scite of circuit failure and the other because of its potential simplicity in certein armications.

A. Fundamentel Theory

Definition 10: $(22,23)$
f is a linearly separatea truth function (aiso celied linesrly sevarable function ana linear-ingut function) in the Soclean variables $\left\{y_{j}\right\}$ in there exists a real golyromial with $\left\{w_{j}\right\}$ rewlecee by $\left\{z_{j}\right\}$ of the form

$$
\lambda=a_{1} z_{1} \div a_{2} z_{2}+\ldots+a_{n} z_{n}+b
$$

where $a_{1}, a_{2}, \ldots, a_{n}$, b are real nunoers such that when $f\left(w_{2}, y_{2}, \ldots, \operatorname{man}_{n}\right)$ is
 negative.

This derinition cen be exterded to nominear functions. DePinition Il:
f is a separable furction in the logical rrouncts $\underline{c}_{1}, \mathrm{C}_{2}, \ldots$, of $_{\mathrm{m}}$ of set of Boolean variables $\left\{\%_{i}\right\}$ if there exists a real polmomial in terms of the real product tems $p_{1}, \sum_{2}, \ldots, n_{n}$ of the reai binary variable $\left\{z_{5}\right\}$ of tine form

$$
\begin{equation*}
\lambda=a_{1} p_{1}+a_{2} p_{2}+\ldots+z_{n} p_{n}+b \tag{24}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$, bare real numbers such that when $\left(v_{i}, w_{2}, \ldots, w_{n}\right)$ is true (or I) λ is positive anc when $f\left(\pi_{1}, \cdots 2, \ldots, w_{n}\right)$ is faise (or 0) λ is negetive.

There have been many papers ($14,6,9,11,13,10,22,23,24,25$) recentiy studyine lineariy separeble functions. This interest cones about because such logic circuits as core logic, parametron logic, ana transistorresistor logic lend themselves naturally to instrumentins linearly
senareble functions.
Yost peners are involvec with either fincing mathemaicei characteristics of Innearly seperable functions, findine methois of ietermining apnoFriate coefficient values, or slorithrs for showing tiat a fiven function is linearly searedie. Dinenr procramins is comonly used an wority Fen (10) on linecr ineguelities is apolicable.

Litile wonk nes been done on non-lirear semerejitity nimarily because of the difficultr of anfreis. fotheom of rean gornorials of binery Variables cen be usenu in the stury of ror-lineor seneronilite in the cese

 function. Tins is true because the $\left\{\begin{array}{c}\text { g }\end{array}\right\}$ mo all vossiole procucte mele up a complete orthomon set such tunt no otier veniajie of the porm of a
 Veriebles ant y-terns fom t besis for the comicte crinconel set.

Orinosonei polyomial theory is ueenu in sepercole functions Deceuse it allows a more rigorous definition of semamaility as in ceninitions io
 functions to Ee treated as Inneorly separeble.

```
#. Nyotnesis on jjineer Seqerebility
```

A number of guthors neve given techniques for proving that a given function is Iinearly separebie and in sone cases inciaenteliy vielains the coefficients. Linear prozraming is used by some (9,12) anc C. Caston (13)

 some cut-and-try woris.

The hypothesis celow is not proved but is a straightornard metiod of shown linear separability in the case of a congletely seciriea gooleen function.

Epotnesis:

Given a complate function for n rinary verisules $\left\{\begin{array}{l}\text { G }\} \text {, is inearly }\end{array}\right.$ separiole if and only in the polynomis in $\{y\}$ of the form

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{12}=\lambda
$$

is such that $\lambda>$ if if inue (or I) anc $\lambda<$ in in false (or D), or $\lambda>b$ if f is false (or 0) ma $\lambda<$ in n is true (or 1), were $c_{1}, c_{2}, \ldots, c_{n}$ are the coefficients thet rould apeer on the respective first order temms of the real polmonial f_{v} in $\left\{w_{j}\right\}$ comesponding to E such thet when $=$ I then $\vec{f}_{v}=I$ and when $\vec{i}=0$ then $\hat{V}_{v}=-2$, and b is some real nurber.

The sufficiencr of the hyotiesis is renaily seen since the vinues of $c_{7}, c_{2}, \ldots, c_{n}$ can be calculated and the vilue of λ row esci function roint calcuiatec. Fnese λ 's can ce checked to see if the conditions of the hypothesis hole true.

The necessity, however, has beer neither provec nor äisprovec. Counter examples are difficult to work with because of the dipejculty in showing whetner a function is actualiy linearly separainle or not. We hypothesis can be readily proven for two variebles by exhaustion out exhaustive analysis of even three veriables is pronioitive aue to the fact there are 256 possible Boolean functions of three variables. This number con be reduced by recogrizing certain symatries.

All linearly seqarable functions are Unate (22) and Ell Unate functions are Iinearly separable for three or less variables. Sut, Unate functions of more then three variables are not all linearly sevarable (25). Thus, in this area exhastins thres variaile functions is not really very convincing anyway.

A hypothesis without proof may seen out of orcer in a paper such as this but the nyothesis is cefinitely of use in many cases for fincing suitable weighting functions and the zroof can be left as an exercise for some later Graçuate stucient.

 A. Come Characteristics of nimbten Codes

Definition 12:
A weighted code vith weights $b_{0}, b_{1}, \ldots, b_{n}$ is a function for thovalued variables such that the function vilues are the set of integers $0,1,2, \ldots, \ldots$ and a linear molmomiol y_{i} in $\left\{z_{i}\right\}$

$$
y_{y}=b_{0}+b_{1} z_{1}+b_{2} z_{2}+\ldots+b_{n} z_{n}
$$

The weirhted coces thet have oeen most thorounhy sturied are those for wich the function values are the interers $0,1,2, \ldots, \xi$. Such coces are called binery coded decimal or ate codes ($1,26,29$). Z. Ficharás (26) gave a Iisting of 4 -variabie (or $4-b i t)$ DC coces founci by trial ane error. C. Feen (29) showed that Eicharas had round the complete set of b-íit ECD cocies with positive weirhts and rent on to zive a complete list with both positive anc negative weights showins aicharas' weri to be incomplete in thet ares. Yeez restricted the wirhts to be intesers $-9 \leq \leq \leq 0$.

Theorem 15: A function of in indeverdent two-valued variables cerined at the points $(1,0,0, \ldots, 0),(0,1,0, \ldots, 0),(0,0,1,0, \ldots, 0), \ldots$, $(0,0, \ldots, 0,1)$ anc $(0,0, \ldots, 0)$ havine function value $0,0, \ldots$, , is a weignted code with integer weights $b_{1}, b_{2}, \ldots, b_{n}$ if and only if the r-term polynomial P_{s} as in Theorem 9 is of the form

$$
\begin{equation*}
p_{s}=b_{0}+b_{1} z_{1}+b_{2} z_{2}+\ldots+b_{n} z_{n} \tag{25}
\end{equation*}
$$

Proof: The sufficiency is obvious. The integer weights fol-
low from Theorem 12. The necessity follows from the unioueness of ${ }_{s}$. Since f is defined at the points where the variables are either all zerc
or only one variable is non-zero then from Theorem 9 will contain the constant term and all first orier terms plus a tern for everg other defined point of f. Since ${ }_{s}$ is unique, then all other golyromials vassing through the defined points must have one or more non-zero terms of products other than those in P_{S}. Since \bar{I}_{s} contains the constant temm and all first order tems of $\left\{z_{j}\right\}$ then all otier polyomisls passine through the defined points of will nave one cr more non-zero tems of oraer higner then 1. Thus no polrnomial gossins thourh the defineä points of $:$ other than P_{s} can be of the form on 2l. I.I.

Theorem 15 gives a metho for finding the reizhts of reighted coafes if such weifhts exist and the restriction on herins certein noints defined is observea.

E. Decoding än-weifhted Coăes

If the function is not or a reighted code fom, real polmomisis con be usea to fina a decodine function. Any rolynonial passing through the $\overline{\text { Qefinea goints can be usea eltiounin using jüjcious cioice such ss }}$ tre simple polynomial ${ }_{s}$ of Fineorem 9 can aid in zeening the decoding simple. A simple example of normeifited decocine is sincrin usinc rable 12. This code is a complete functior shom with both the inary variables ${ }_{1}, W_{2}, W_{3}$ and the real variables V_{1}, V_{2}, V_{3}. It is of the type inom es reflectec oinary ank is useful in mechanical anaioz to dieitel converters.

Table 12. Reflectec oinary cocie.

W_{3}	W_{2}	W_{I}	v_{3}	v_{2}	v_{1}	0
0	0	0	-1	-1	-1	0

Table 12．Continueā

${ }^{3}$	\％2	W_{i}	${ }^{\text {V }} 3$	v_{2}	J_{1}	？
0	0	1	-1	－1	1	1
0	I	I	－1	I	\geq	2
0	1	0	－i	1	－1	3
1	I	0	こ	\pm	-1	4
1	I	こ	1	\pm	2.	5
$?$	0	コ	1	－	1	6
1	0	0	1	－1	－1	7

We suster：of equations 5 and 6 wives the nolenomial

$$
\begin{equation*}
f\left(v_{2}, v_{2}, v_{3}\right)=\frac{\dot{z}}{2}\left(T+\dot{1}_{3}-v_{2} v_{3}+v_{2} v_{2} v_{3}\right) \tag{20}
\end{equation*}
$$

ninci can be trensfomed to a nolyomiel in a

$$
f\left(z_{1}, z_{2}, z_{3}\right)=z_{2}+3 z_{2}+7 z_{3}-2 z_{1}, z_{2}-2 z_{1} z_{3}-6 z_{2} z_{3}+4 z_{2} z_{2} z_{3}
$$

$$
\begin{equation*}
=\frac{1}{2}\left\{7+z_{3}\left[4-z_{2}\left(2-z_{1}\right)\right]\right\} \quad \text {. } \quad(20) \tag{27}
\end{equation*}
$$

We fom of 26 is userul if gerit：functions of tie vericoles ane
 27 is more comaicaté than the others unt can be instrumented by finain－ iogical products anc taking the weighted sum both overetions ore guite straight forward．
VI. Tuedrand deomite
A. Ceneral Consiceratiors

One of the most useful applications of real polyomials of binary Functions is functional decoding. This con meen circuits with an malog output that is a function of a dizitel input on transfomation to some discrete or aicitai form of afunction of a dieital ingut. The real polymial theory above apuly cirectly to such problems since the polynomisl itself is a description of the decoaina.

In this section it is cormon to toil about e sine function or square function. Wis can be interpreted to meen tie function under consideration is the sine or souare function of a variable that increases linearly aow the function taile. In examples both tie function and linear interpretation denoted by z will be fiven.

```
        3. Dquare Tunction
    A simple example of functionsl decocing is the souare function
```

illustrated in Taile 13.

Table 23. Complete three variable square function

ε	w_{3}	w_{2}	w_{1}	$\because()=s^{2}$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	4
3	0	1	1	9
4	1	0	0	16
5	1	0	1	25
6	1	1	0	36

Table 13. Continued

ฐ	${ }^{*} 3$	${ }^{*} 2$	W_{1}	$F()=s^{2}$
7	1	I	I	49

Two reai polynomiais describing Table 13 are

$$
r\left(v_{1}, v_{2}, v_{3}\right)=\frac{1}{2}\left(35+7 v_{1}+1 l v_{2}+28 v_{3}+2 v_{1} v_{2}+k v_{1} v_{3}+8 v_{2} v_{3}\right)
$$

and

$$
f\left(z_{1}, z_{2}, z_{3}\right)=z_{2}+4 z_{2}+16 z_{3}+4 z_{1} z_{2}+0 z_{1} z_{3}+16 z_{2} z_{3}
$$

Thus tine function can be instrumertea to fina an analog outnut by taking a weighted sum of the first oraer and second oraer logical products. The weishting and adaition could also be cone y aisital operations anc the result would be a disitai numer representine f. wote that no thirc order term appears in the functions of $\left\{z_{j}\right\}$ and $\left\{v_{j}\right\}$.
C. Thaorem Relating Binary Power anc Function Power

Theorem 16: Given any reai oränery polynomial fof order oin a set of variailes $\tilde{g}_{1}, \varepsilon_{2}, \ldots, \sigma_{m}$ where $\varepsilon_{工}, \tilde{E}_{2}, \ldots, \varepsilon_{m}$ are all functions of a set of two-valued variacles such that $\left\{g_{i}\right\}$ are each a weizhted code with weights $b_{0},{ }_{1}, b_{2}, \ldots, b_{n}$, then f can be written as a polvomian in $\left\{z_{j}\right\}$ of onder no more then 0 .

Proof: The variable z_{i} can be written as $s_{i}=b_{0} \div b_{1} z_{1 i}+b_{2} z_{2 i}+\ldots+b_{n} z_{n i}$

The highest oraber terms of $\left\{\left\{\tilde{z}_{i}\right\}\right.$ contain at most o terms of $\left\{\varepsilon_{i}\right\}$ ana since $\left\{s_{i}\right\}$ are each linear in a set $\left\{z_{j i}\right\}$ the order of the highest possible term in $\left\{z_{j i}\right\}$ is 0.

This theorem has apgication not only in fitting polyomials of weichted code function but in agproximations. Wote thet transformation from $\left\{z_{j i}\right\}$ to any set or two-valued variables $\left\{x_{i j}\right\}$ does not increase the order of the rolynomial.

Conollary 1: Given a function $\overline{\text { E }}$ of a set of wejphted code functions $\left\{\varepsilon_{i}\right\}$ and an apmoximate polyomial in $\left\{\varepsilon_{i}\right\}$ of craer o there can be no better fit by any given criterie than tre best fit polynomial in $\left\{z_{j i}\right\}$ of orảer c.

Fitha best fit criteria such as least squares the best fit in $\left\{z_{\text {jij }}\right\}$ of order o is usualy far suserior to the best fit in $\left\{\varepsilon_{i}\right\}$ of order o.

Pron Corollary I the zreat usefuness of the crtionoral veriables $\left\{y_{j}\right\}$ is obvious. Fon wel? Behave, functions on orcinery real variables a better and vetter ait rin be anieved as the onder of an appoximate polgnonial is increased. The same must hold true for binary variables of the real variaites in they are weignted code functions of binary variacles.

An examie of approximate fittihn is given later. For incomplete functions the least squeres analysis lescribed zreviously con be usek, hovever, a Cifferent method of treatins incomplete functions is given next.

D. Eezmented fapecximation

Sequented approzimation is the use of uiferent polynomiels to describe different parts of a given curve (15,28). This can be particulerIy useful in incomplete functions. Note that the function fof $=$ teishted. code toriable ε_{i} is complete in $\left\{z_{i j}\right\}$ only $i \hat{F}_{i} z_{i}$ is complete thus takinc on exactly 2^{n} values, a $1,2, \ldots$. Mis will certainly not always be the
case. This problem can be banclea in several wars:

1) Fina the least squares best fit in the incomalete ounction by the methoa of Section IIT.
2) Eick a convenient set of values to define the underined points.
3) Partition the domain g into sets of points thet are complete in $\left\{z_{j}\right\}$.
4) Combine 2) and 3).

Convenient ways of pickins arbitrore points are to either extena the function f ir it is knom for other values (this is done in a later example) or use some form of extrapolation to find the aditionsl points (i5).

The erample given in Table 14 is used to demonstrated partitionine. Table 14. Incomplete three variabie squere function

	z_{3}	z_{2}	z_{1}	$3()=.\sigma^{2}$
0	w_{3}	η_{2}	w_{1}	0
1	0	0	0	1
2	0	0	1	4
3	0	1	1	9
4	1	0	0	16
5	1	0	1	25
6	1	1	0	36

ξ can be partitioned at the first four variables giving the complete function of Table 15.

Table 15. Table for f_{1}

	z_{3}	z_{2}	z_{1}	$f_{1}()=.z^{2}$
0	w_{3}	w_{2}	w_{1}	0
1	0	0	0	1
2	0	0	1	4
3	0	1	0	9

From the remainine part of Wable 14 a $=4$ and $g=5$ form the complete function given in Table 16 .

Table 16. fable for f_{2}

	z_{3}	z_{2}	z_{i}	$f_{2}()=.\sigma^{2}$
	w_{2}	w_{2}	w_{1}	16
5	1	0	0	25

$$
f_{2}\left(z_{1}\right)=16+9 z_{1}
$$

The function for $g=6$ is simply $f_{3}(z)=36$. These functions can now be recomined by using the fact that $z_{3}=0$ for Table $15, z_{2}=1$ and $z_{3}=0$ for Table 16 and $z_{3}=1, z_{2}=1$, an $z_{1}=0$ for the value at $s=6$. The combination is as follows:

$$
\begin{aligned}
f\left(z_{1}, z_{2}, z_{3}\right) & =\bar{z}_{3} f_{1}\left(z_{1}, z_{2}\right)+z_{3} \bar{z}_{2} \hat{r}_{2}\left(z_{1}\right)+z_{3} z_{2} \bar{z}_{1} \hat{B}_{3}(z) \\
& =\bar{z}_{3}\left(z_{1}+4+z_{2}+4 z_{1} z_{2}\right)+z_{3} \bar{z}_{2}\left(16-9_{1} z_{1}\right)+36 z_{3} z_{2} \bar{z}_{1} \\
& =z_{1}+4 z_{2}+16 z_{3}+4 z_{1} z_{2}+\hat{\delta} z_{1} z_{3}+16 z_{2} z_{3}-49 z_{1} z_{2} z_{3}
\end{aligned}
$$

but $z_{1} z_{2} z_{3}$ is "not allowec" thus

$$
\begin{equation*}
f\left(z_{1}, z_{2}, z_{3}\right)=z_{1}+4 z_{2}+16 z_{3}+\frac{1}{4} z_{1} z_{2}+8 z_{1} z_{3}+16 z_{2} z_{3} \tag{29}
\end{equation*}
$$

The technique arriving at 29 is quite similar to the srstem of finding a polynomial in z and \vec{z} described in meorem 2. 29 is an exact fit but the functions f_{1}, f_{2} and f_{3} could be approximations in general.

The least squares best fit technique I) is siwars better than these other approaches (at least in a least squares sense), ionever, in some cases the calculation of the least squares coefricients might ise more expensive then the adacd complexity.
Z. Interpoletion

A function of binary variables can be interpreted to have useful meaning when the binary variables are ailowed to take on values other than the two defined values for at least tro kince of weightec functions used as variables. An easily understanảale variation occurs when birary veriables are ailowec to be continuous one at a time.

The first case to be examined is the orainem binary function shom For three variables in rable 27. Txtension to more variables is farly obvious.

Tejle 17. Orāinary binar: coded decimal cocie

z_{3}	z_{2}	z_{1}	z	$r(0)$
0	0	0	0	y_{0}
0	0	1	1	y_{1}
0	1	0	2	y_{2}
0	1	1	3	y_{3}
1	0	0	4	y_{4}

Table 27. Continueả

z_{3}	z_{2}	${ }_{2}$	ε	$f($.
2	0	I	j	r_{5}
1	2	0	6	76
ב	I	之	7	y_{7}

Let z_{1} be a continuous varioble. Gen if z_{2} and z_{3} are held constant the function $f\left(z_{1}, z_{2}, z_{3}\right)$ will be a linen function in z_{1} rassing throub the pair of yoints usfineu by the valus of cormespaning to the velue of z_{2} ancoi z_{3}. If z_{1} is allowet to taise on the values $-\frac{i}{2} \leq z_{j} \leq i \frac{1}{2}$ the resuit is shom raphicaly in Figure i. From this mrapit it con be seen that the variation on z_{1} is a form of inear interpolation between definea points of the function. This interpolation can be usec to give "finer Erained" functions oy reviscine the veriable z_{1} b a or more binary vari2oles that will give several points on the interpolatine line. For example

$$
z_{1}=\frac{1}{4}\left[z_{11}+2 z_{12}+4 z_{13}\right]
$$

Will give 3 points or a line fron - $\frac{i}{4}$ to $+1 \frac{i}{2}$ if z_{11}, z_{12}, z_{13} are organized in sequence as orainary binary variables of the form of Table 17. Note that this interpoletion increases the number of terms of a $\left\{z_{j}\right\}$ yolynomial representation but not the oraer of tine polynomial since z_{1} is linear in the added varizbles.

If many points of a well behavecu function are taken the interpolation will be cuite good. The slope of lines through adjacent points as described above will take on the vaiue of the derivative between the points by the

Figure I. Interpolation example
law of the mean and as shorter and shorter line segments are taken, the derivatives of ajjacent curve sections become more neariy eçual.
fnother weighted code system that iends itself to interpoletion, in theory at least, is the reflected Binary function of Table le. Extension to more than tinree variables is obvious.

Table 18. General refiected binary code

ε	z_{3}	z_{2}	z_{2}	$\left.r_{0}\right)$
0	0	0	0	y_{0}
1	0	0	1	y_{1}
2	0	1	1	y_{2}
3	0	1	0	y_{3}
4	1	1	0	y_{4}
5	1	1	1	y_{5}
6	1	0	1	y_{6}
7	1	0	0	y_{7}

Ferlected binary coan have the characteristic that in going from one integer of z to an adjacent one only one of the binary variables changes. If the domain z is visualizea as a cube (or hyorcube in eneral) this amounts to going from one vertex to an adjacent one. If at any point the variable trat changes is causec to change continuously from 0 to 1 (or from 1 to 0) insteed of aiscretely tine result with respect to I wing be a linear change in the function value from the value of the orizinal vertex to the value of the next vertex. It must be linear because the function f is linear in any single variaile of $\left\{z_{i}\right\}$ and it must pass through the adjacent function values by the nature of the binary polynomial.

Tris reflected binary example is interesting in theory but difficuit to instrument. Some insight into the type of surface in n-space that is generated by treating all $\left\{z_{j}\right\}$ as continuous can now be seen. The intersection of the surface with any of the extended planes of the faces of the hypercube must be linear but the intersections with any other zlanes are in general non-linear.

F. Bins Furction Exemole

A practical Eroblem rould be to generate the sine of en oranery weisnted bingry function for ansles from 0° to 90°. Such e function is Eiven in Table 29 For 20 increments. We anzie from 0° to go irclusive in 2° stens takes 46 goints. Jy extencing the aerinition to 92° anc 94° 40 points are defined. Ghis can then be broizen dom into a 32 point compiete function in $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$ anc a 16 zoint complete function in $z_{1}, z_{2}, z_{3}, z_{4}$, he least scueres best zolrnorial y_{1} of orier 3 for I_{1} is

$$
z_{1}\left(z_{1}, z_{2}, z_{3}, z_{1}, z_{5}\right)=-0.0000910+0.0349875 z_{1}+0.060800 z_{2}
$$

$$
\div 0.1393200 z_{3}+0.2757713 z_{4}+0.5300831 z_{5}
$$

$$
-0.0001975 z_{1} z_{2}-0.0005775 z_{1} z_{3}
$$

$$
-0.001650 z_{1} z_{4}-0.0057750 z_{1} z_{5}
$$

$$
-0.0012225 z_{2} z_{3}-0.0035950 z_{2} z_{4}
$$

$$
-0.0121200 z_{2} z_{5}-0.0083450 z_{3} z_{4}
$$

$$
-0.0265700 z_{3} z_{5}-0.0527+25 z_{4} z_{5}
$$

$$
-0.018_{300 z_{3} z_{4} z_{5}-0.009170 z_{2} z_{4} z_{5}, ~}^{\text {a }}
$$

$$
-0.004505 z_{2} z_{3} z_{5}-0.004600 z_{1} z_{4} z_{5}
$$

$$
-0.0022350 z_{2} z_{3} z_{4}-0.0023150 z_{1} z_{3} z_{5}
$$

$$
-0.0010650 z_{1} z_{3} z_{4}-0.0011350 z_{1} z_{2} z_{5}
$$

$\begin{gathered} \text { angle } \\ 0 \end{gathered}$	$z_{6} z_{5} z_{1} z_{3} z^{2} z_{1}$	f_{1} exact sine	P_{I} approx. sine	error
0	000000	0.00000	0.000092	+0.000092
2	000001	0.03400	0.031896	+0.000004
4	000010	0.06976	0.069798	-0.000033
6	000011	0.10453	0.104588	-0.000058
3	000100	0.13917	0.139228	-0.000058
10	000101	0.1736	0.17354	-0.00004
12	000110	0.2079	0.20790	+0.00000
14	000111	0.2418	0.24181	+0.00009
16	001000	0.2756	0.27568	-0.00008
18	001001	0.3090	0.30002	-0.00002
20	001010	0. 3420	0.34798	$\div 0.00002$
22	001011	0.3746	0.37453	+0.00007
24	001100	0.4067	0.40666	+0.00004
26	001101	0.4384	0.43335	$\div 0.00005$
f 20	001110	0.4695	0.46949	$\div 0.00001$
${ }_{-30}$	001111	0.5000	0.50010	-0.00010
32	010000	0.5290	0.52999	-0.00009
34	010001	0.5592	0.55920	-0.00000
36	010010	0.5870	0.50776	$+0.00004$
38	010011	0.6157	0.61564	+0.00007
40	010100	0.6420	0.64274	+0.00006
42	030101	0.6692	0.66906	+0.00004
44	010110	0.6947	0.69470	-0.00000
46	020111	0.7 ± 93	0.71939	-0.00009
40	011000	0.74 .37	0.74302	+0.00008
50	011001	0.7660	0.76598	+0.00002
52	011010	0.7820	0.78803	-0.00003
54	011012	0.8090	0.80907	-0.00007
56	011100	0.8290	0.82905	-0.00005
50	011101	0.0480	0.84305	-0.00005
60	011110	0.0660	$0.8660 i$	-0.00001
62	011711	0.3829	0.88280	+0.00001
64	100000	0.8938	0.89068	$\div 0.00012$
66	100001	0.9135	0.91352	-0.00002
68	100010	0.9272	0.92725	-0.00005
70	100011	0.9397	0.93975	-0.00005
72	100100	0.9511	0.95120	-0.00010
$\mathrm{f}_{2} \mathrm{~T}_{4}$	100101	0.9613	0.96130	$\div 0.00000$
${ }^{2} 76$	100110	0.9703	0.97026	+0.00002
78	100111	0.9781	0.97302	$\div 0.00008$
80	101000	0.9848	0.98490	-0.00010
82	101001	0.9903	0.95030	-0.00000
54	101010	0.9845	0.09448	+0.00002
86	101011	0.9976	0.99752	-0.00008
88	101100	0.9094	0.99932	$+0.00008$

Table 19. Contimued

$\begin{gathered} \operatorname{arcle} \\ 0 \end{gathered}$	$\mathrm{z}_{6} \mathrm{z}_{5} \mathrm{z}_{4} \mathrm{z}_{3} \mathrm{z}_{2} \mathrm{z}_{1}$	F_{1} exact sine	$P_{\text {I }}$ anmrox. sine	error
90	101101	1.0000	0.09096	-0.00002
92	101710	0.9994	0.99940	$\div 0.00000$
94	201112	0.9976	0.99770	-0.00010

$$
-0.0005050 z_{1} z_{2} z_{4}-0.0003000 z_{1} z_{2} z_{3}
$$

and the least squares best fittine polyomial y_{2} of orcer 2 for f_{2} is

$$
\begin{aligned}
E_{2}\left(z_{1}, z_{2}, z_{3}, z_{4}\right) & =0.090675+0.014950 z_{1} \div 0.026575 z_{2} \\
& +0.052505 z_{3}+0.006225 z_{4} \div 0.002350 z_{1} z_{2} \\
& -0.004750 z_{1} z_{3}-0.009450 z_{1} z_{4} \\
& -0.009500 z_{2} z_{3}-0.019000 z_{2} z_{4}-0.036100 z_{3} z_{4}
\end{aligned}
$$

and the appoximatins function P of is

$$
P\left(z_{1}, z_{2}, z_{3}, z_{1_{4}}, z_{5}, z_{6}\right)=\bar{z}_{6} \bar{p}_{1}\left(z_{1}, z_{2}, z_{3}, z_{14}, z_{5}\right)+z_{6} \bar{z}_{5} z_{2}\left(z_{1}, z_{2}, z_{3}, z_{14}\right) .
$$

z_{1} contains 26 tems and y_{2} conteins il terms, therefore, e total o 37 neizhts are requireà. Since the sine is a mooth function and can be acproximated guite accurately with linear interpolation of 40 seaments, interpolation for z_{1} is definitely yossiole. Usint

$$
z_{1}=1 / 64\left(z_{16}+2 z_{15}+4 z_{14}+3 z_{13}+16 z_{12}+32 z_{11}\right)
$$

will give an ancular resolution of l/16 dearee which is in the same order as the accuracy of the approximation E. Wvery term in wich z_{1} appeared Fould now have 6 terms givine a total of 127 weights recuired (one for each term of P_{I} ana P_{2} containing $a z_{I}$ term), however, many of these new coefficients would be negligible reducing the total number of weignts required to about 30 . Thus, a wejegted sum of logical products usine aoout 80 weignts (many of which coula be fairly inaccurate) can provicie a sine function output of an crdinary binary variable input with an accuracy of about 0.1\%.
G. Applications

There are many applications of functional decoding, end a fe:r of the more interesting ones are mentioned here.

A fairiy contion problem in radar systems or any system requiring
processing of coorainate data from ancle sensors is conversion from a aisital shaft encoder (usuaily in reflected binary) to trionometric functions. Functional decodine is very convenient in defining e conversion circuit.

Although conversion to analog functions is the most oivious, conversion to a disital number can also be convenient. In the sine function example above, the 30 weights coula be stored and the sine (in dizital form) of a binary numer could be found by programine the appropriate aảcitions and subtractions. The important fact here is that only adaition and subtraction are needed and not multiplication, division, or taking povers. This principie could be extenced to any function.

An interesting yossibility is that of using functional decoding to find an approximate procuct of two numbers. A airect approach or quartersquare multipiier agproach might be used.

It is important to note that the reai polynomial aporcach to functional decoing can be applied to functions of more than one varieble. This misht turn out to be one of its most useful properties. It is difficult to $\underset{\text { Get analog functions of several variables by any technique ana }}{ }$ aicital functions of several variacles can require extensive storaze on lone calcuiation.
VII. DADEEU FECOGITION

The Introduction roints out that pattern recoenition schenes heve been extensively studied recently. Some problem areas are l) Iack of a sood useable cescription of patterns, 2) graininess of tine mathematicel abservation, ana 3) inebility (in most cases) to hende multitone patterns.

The polynomial of binary variables aproach to functional decocine has interestine applicatior to these problen arees. The deeree of certness can be treatec as efunction or the two (or wossibly three) coonaidnte variables and cen be found as a volynomiel in binery coced coorinate varidoles. The most interestinc rolymomiel to use is in \{y, \}. Due to the b orthogonality the contribution to the function of an term cen be ueteminec Girectly from tie coefincient of the tem, Gus the coenficjents of the Zolunomais in $\left\{y_{j}\right\}$ for a set on watterns can be investigatec and selectea coefficients can be used as the "parameters" cescribing the pattern.

Dote that multitone functions are readily treated. Graininess cen be inproved by consicering the anount on aris area in eriven ares that proVides a function goint. aote aiso that thee uimensional zatierms con be nanclec in a similar marner.

These paraneters can be snalyzes onc tine cecision as to pettern can be by eitner an açaptive syster or direct stetisticel anaysis. Fnis type of problem can ce handea very nicely by statisticel analysis.
VIII. Conciusions and Sumery

This dissertation hes develoned the inea of real polyomiels of bincry variables and ceveloped and sursested several areas of appication.

Geveral uses have been fiven in the areas where Eoolen alcecra is traditionally appliec. The whole aree of goolean functional separability can nossibly be treated fron real variables ana some appoacrs have been suasested.

Te stuay of weintea codes seems to fall naturally into the catefory of real function araivsis. The very derinition of reigitec codes is more memingful in tems of real varisoles.

Tunctional decocing is nother natural aplication, Whis decoding car. be dizital to enaloz or digital to difital onc functions of several variables can be treated.

Pattern recognition is the ieast cevelopec area of aplication ziven in this dissertation. This is not kue to its leck of importence, on the contrary, it nay be the most important area. Zowever, an adequate analysis of this anolication would be a lemethy dissertation in itself and is beyonc tre scope of this dissertation.

Some specific applications developec are:

1) a different technique for proof of poolean loaic theorems anc icentities;
2) an inherently reliable locic system;
3) a simple non-neçation logic system;
4) a hypothesis on linear separability of Boclean functions;
5) a representation of anc a theorem on veighted cocies;
6) design of decoding circuits for non-weightea cocies;
7) techniques for circuits to give functions of binarur variables;
8) a unicue metnod of storing (digitally) function tobles.

Some obvious extensions of this material are:

1) a. complete analysis of application to pattern recosnition;
2) develop 3001 ean algebra from reai varisble theory;
3) a. more complete stuay of non-neqation lozic inclucine circuits;
4) Drove the nycothesis of part IV, section E and further extend the spolications to separability theory;
5) develon further restriction on weinhted codes and study characteristics of certain non-weishted codes;
6) extena functionel aecodine anglications.

IY. LIGRETURE CImP

1. Beger, A. Uniqueness of weighted code representations. II. Institute of Electrical and Electronic Encineers Pransactions on Dlectronic Computers EC-12: 137. 1563.
2. Bleãsoe, 7.7 . anà Browning, I. Datiern recoznition and reacins by machine. Eastern Toint Computer Conference Proceedinss 16: 225-232. 1959.
3. Eoole, George E. An investigation of the laus of thought. ioncon, England, Tacminian and Co. 1854.
4. Chow, C. 2. Eoolean functions realizaile with sinzie threshold devices. Institute of Radio Engineers Proceedings 49: 370-371. iǵr.
5. Chu, Yeohun. Digital computer design fundarentals. \#e: Yoni, it. そ., YcGran-inil 300 Co., Inc. 1962.
6. Colemen, Pobert P. Ortnogonal functions fon the logical design of switching circuits. Institute of Dadio Engineers Transactions on Ilectronic Computers EC-10: 379-383. 1961.
7. Cox, Jerme R., ir. A squarine aneloz-aigital converter. Institute of Radic Entineers Transactions on Dectroni Conputers EC-9: $487-434$. 1960 .
8. Deviá, I. . $2^{\text {E }}$ Eactorials. Unpuisheà cless notes for Etatistics 4020, January 1963. Zineceranied. Ames, Iova, Department of Statistics, Iove Stste University of Science anc. Technologr. 1963.
 tion of Eocien suitching functions tureas of manetic cores. Institute of Padic Zngineers Transactions on Dlectronic Computers EC-10: 615-622. 1061.
io. Fan, V . on systems of linear inequaities. Annals of Mathematical Studies ifo. 39: 99-156. 1956.
9. Gableman, Irving T. The synthesis of Boolean functions using a singie threshola element. Institute of Padio Ingineers Transoctions on Electronic Computers 2C-11: 639-6:2. 1962.
10. Garin, Falter . Introduction to linear programine. New Yori, :i. I., EeGraw-Eili Jook Co., Inc. 190́0.
11. Gaston, C. A. A simple test for linear semarability. Institute of Zectricai and Electronic Encireers Eransections on Tlectronic Computers $\mathrm{EC}-12$: 134-135. 1963.
12. Eighleman, i. .2. An analog method for charecter recognition. Institute of Radio Snzineers Trensactions on Electronic Computers EC-10: 502-512. 196I.
 Mconm-inill jook Co., Inc. 1556.
13. Fofteimer, ․ . \because. anci Perry, in. Disital anelos function fenerators. (Dincoin Lavoratory, Vessachusetis Institute of Technoloss) Technical Report $\because \mathrm{O} .162$ on Contract $A 19(122) 453$. 23 August 1957. Orisinal rot available; citec in U. S. Governmeni Research geports 3i: 459. June 12, 1955.
14. EMoritiz, I. D. anc Ghelton, G. L., Ir. Fatierr recognition using autocorrelation. Institute of Pảio Incineers Proceedings 40: 175-185. 1961.
15. Kautz, Killiam Fir The realization of smmetric swithing functions with linear input logic elements. Institute of Fadio Engineers Transactions or Electronic Computers 10-10: 371-378. 1061.
16. Keiler, i. 3. Finite automata, pattem reconition and perceptions. Association of Computine lachines Journal 8: 1-20. 2961.
 iesign of pattern recognizers. Institute of Eadio Engineers Trensactions on Dlectronic Computers EC-9: 472-477. 1960.
17. Massachusetts Institute of Technology. Eervomechanizms Laboratory. Hotes on analog-aigital conversion techniques. and ed. Fev. Hev York, if. Y., Technoloey Press. 1959.
18. Vciaughton, Z. Unite truth functions. Institute of Radio Engineers Transactions on Electronic Computers EC-10: 1-5. 1061.
19. Ninnick, Robert C. Inear-input logic. Institute of Radio Engineers Transactions on Electronic Computers EC-10: 6-16. 1961.
20. Muroga, E., Toda, I. and Takasu, E. Theory of majority decision elements. Franilin Institute Journal 271: 376-418. 1961.
 with single threshold devices. Institute of Radio Engineers Proceedings 43: 1335-1337. 19060.
21. Ficharcis, R. K . Arithmetic operations in aizital computers. Princeton, \%. J., D. Van IFostrand Co., Inc. 1955.
22. Shannon, C. E. Symbolic analysis of relay and switchine networks. American Institute of Electrical Engineers Transactions 57: 713-723. 1938.
23. Sokolnikoff, I. S. anā Redheffer, R. N. Kathematics of physics and modern engineering. New York, W. Y., YcGraw-Eill Book Co., Inc. 1958.
24. Weeg, G. P. Uniqueness of weighted code representations. Institute of Radio Engineers Transactions on Electronic Computers EC-9: 487-489. 1960.
25. Whitehead, A. N. and Russell, 3. Principia Mathematica. Vol. 1. Cambridge, England, Cambridge University Press. 1910.
26. Young, D. A. Automatic character recognition. Electronic Engineering 32: 2-10. 1960.

x. ACFOMTEDGETMA

The writer wishes to express his anpreciation to nis major professor, Dr. A. V. Fonm, ana to Dr. I. T. Devio for their reviem enc coment. The writer also wishee to thank. Srs. Skola for her typina and his vife for performing many calculations, for tecinical criticism and her editorial revie: of the text.
MI. APDETDTX A
A. Ortiogonality of the Variables $\left\{v_{j}\right\}$

Given a set of n two-valued variables $\{v\}$ with value +1 anc -1 consider the array of all the possible combinations $k=1,2, \ldots, 2^{n}$ of these variables and all possible products of $\left\{v_{j}\right\}$. Lable in any order the variabies $v_{1}, v_{2}, \ldots, v_{n}$ and the proàucts $b y p_{1}, v_{2}, \ldots,{ }_{2}^{n}{ }_{2}$. The p-terms are mutually orthogonal such that

$$
\begin{align*}
& \sum_{k=1}^{2^{n}} p_{i k} p_{j k}=0 \tag{30}\\
& \sum_{k=1}^{2^{n}} p_{i k} p_{i k}=2^{n} \tag{31}
\end{align*}
$$

and all orthogonai to any finite constent c givine

$$
\begin{equation*}
\sum_{i=1}^{2^{n}} c p_{i k}=0 \tag{32}
\end{equation*}
$$

Proof: The proof is by mathematical incuction. The array for $\mathrm{n}=2$ is given in Table 20 .

Table 20. Variable table for V_{1}, v_{2}

		p_{1}	\underline{v}_{2}	\imath_{3}
1	c	v_{1}	v_{2}	$v_{1} v_{2}$
2	c	-1	-1	1
3	c	-1	1	-1
4	c	1	-1	-1

It is readily seen thet 30,31 , and 32 hold for Table 20 . Note also that the sign of any or all colums may be changed and the resuitant array still satisfies 30,31 , and 32 , and further that

$$
\sum_{k=1}^{2^{n}} \eta_{i k}\left(-o_{i k}\right)=-2^{n}
$$

Now consider the $2^{n} \times 2^{n}$ array for n variables given in Table 21 where all the conditions given for rable 20 hold true.

Table 21. Variable table for $v_{1} v_{2} \cdots_{n}$

k	c	Ξ_{2}	z_{2}	. \cdot	$2^{n}-1$
1	c	v_{11}	${ }^{2} 21$	-••	$v_{11} v_{21} \cdots v_{n 1}$
2	c	v_{12}	${ }^{2} 2$	-	$v_{12} v_{22} \cdots v_{n 2}$
3	c	v_{13}	v_{23}	-••	$\mathrm{v}_{13} \mathrm{v}_{23} \cdots \mathrm{v}_{\mathrm{n} 3}$
-	-	-	-	-	-
-	.	-	-	-	-
2^{n}	c	$\mathrm{v}_{12^{\mathrm{n}}}$	${ }^{\mathrm{v}} 2^{\mathrm{n}}$	-••	${ }^{\mathrm{v}} 12^{\mathrm{n}^{\mathrm{v}}} \underset{22^{\mathrm{n}} \cdots{ }^{\mathrm{v}} 2^{\mathrm{n}} .}{ }$

If a variable v_{n+1} is acided the new array will be of the form of Table 22. From $30 \underline{n}_{2}$ is orthogonal to $\underline{n}_{1}, n_{2}, \ldots, E_{2^{n}-1}$ since
$\sum_{k=1}^{2^{n}}(+1)_{p_{i k}}=0$ and $\sum_{k=2^{n}+1}^{2^{n+1}}(-1)_{\sum_{i k}}=0$. Consioering the rows $i=1,2, \ldots, 2^{n}$ each column $p_{2} n_{+i}$ is orthogonal to $c, p_{1}, p_{2}, \ldots, n_{2}^{n+1}$ except p_{i} and ${ }_{2}{ }^{n+1}+i$ for which

$$
\sum_{k=1}^{2^{n}} p_{i k}^{p} 2^{n+i_{k}}=2^{n}
$$

and

$$
\sum_{k=1}^{2^{n}} p_{2^{n+i_{k}}}^{p} 2^{n+i_{k}}=2^{n}
$$

Similarly for $k=2^{n}+1,2^{n}+2, \ldots, 2^{n+1}$ each column $2_{2^{n}+i}$ is orthozonal to
every $c, \sum_{1}, p_{2}, \ldots, \sum_{2}+1$ except p_{i} and $p_{2^{n}+i}$ for wich

$$
\sum_{i=2^{n}+i}^{2^{n+1}} \underline{i}^{n}{ }_{2^{n}+i}=-2^{n}
$$

and

$$
\sum_{i=2^{n}+1}^{2^{n+1}} 2_{2^{n}+i}^{p} 2^{n}+i=2^{n}
$$

How

$$
\sum_{i=1}^{2^{n+1}} \sum_{i^{n}}^{n} n_{i}^{n}=2^{n}-2^{n}=0
$$

and

$$
\sum_{k=1}^{2^{n+1}} 2_{2^{n}+i}^{p} 2^{n+i}=2^{n}+2^{n}=e^{n+1}
$$

Also for $y_{1}, p_{2}, \ldots, V_{2^{n}-1}$

$$
\sum_{k=1}^{2^{n+1}} \sum_{i} \sum_{i}=\sum_{i=1}^{2^{n}} p_{i} D_{i}+\sum_{n=2^{n}+1}^{2^{n+1}} \sum_{i} p_{i}=2^{n}+2^{n}=2^{n+1}
$$

Thus, the conaitions of Taile 20 are true for $n+1$ if true for n. Thus, $30,3 \overline{1}$, anc 32 hola for any number of variaides $\left\{v_{j}\right\}$.

Table 22. Variable table for $v_{1} v_{2} \ldots v_{n} v_{n+1}$

XII. APPEWIX 3

A. Coefficients of a Polynomial in $\left\{\mathrm{v}_{\mathrm{j}}\right\}$

Given a finite function of n tho-valuec variables the function can be written as a polynomial in z and \bar{z} by Theorems 2 and 4. If tinis is done the contribution to the function due to a coefficient y_{k} is

$$
\begin{equation*}
y_{k} \bar{z}_{1} \bar{z}_{2} \ldots \bar{z}_{j} z_{j+1} \cdots z_{n} \tag{33}
\end{equation*}
$$

where z_{1} thru z_{j} are 0 anc z_{j+1} thru z_{n} are 1 for the row of the function table with function value \bar{y}_{k}. This term of the function in z, \bar{z} variables can be transformed to the function in variables $\{v$,$\} br the transformations$ $z_{j}=\frac{1+v_{j}}{2} \quad z_{j}=\frac{I-v_{j}}{2}$. We y_{k} term in variables $\left\{v_{j}\right\}$ becomes

$$
\begin{equation*}
\frac{y_{1}}{2^{n}}\left(1-v_{I}\right)\left(1-v_{2}\right) \ldots\left(I-v_{j}\right)\left(I v_{j} I\right) \ldots\left(I v_{n}\right) . \tag{34}
\end{equation*}
$$

Fote that in a function table in $\left\{v_{j}\right\}$ the row of variajies corresponaing to the function value y_{k} is -1 for v_{I} trru v_{j} anc +1 for v_{j+I} trru v_{n}. Expancing 34 each term of the volynomial in $\left\{v_{j}\right\}$ of the function appears once and only once and has a coffficient $\frac{2^{n}}{2^{n}}$ if the prouuct or variables $\left\{v_{j}\right\}$ appearing in a civen term is positive for the row corresponaing to function value $\bar{y}_{\underline{Z}}$ and the coefficient is $-\frac{\bar{y}_{\mathrm{k}}}{2^{n}}$ otheraise.

Since the polynomial in z, \bar{z} is made un of $2^{\text {n }}$ tems of the form 33 then the polynomial in $\left\{v_{j}\right\}$ will be the sum of 2^{n} terms of the form 34 . Ading the contribution to a v polynomial term from each term of the form 34 results in the following equations for the coefficients $c_{i, j}, \ldots, m$ of the $v_{i} v_{j} \ldots v_{m}$ term of the v matrix

$$
\begin{aligned}
& c_{0}=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} v_{k} \\
& c_{i}=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} v_{i k} v_{k} \\
& c_{i j, \ldots, m}=\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} v_{i k} v_{j k} \cdots v_{m i k} v_{k} .
\end{aligned}
$$

XIII• RPPBIDIX C

A. Sxistance of a Simple Polynomial of any Incomplete Function

Given any incomplete function of n two-valued variables defined at m points, a polynomial can be written that takes on the function value at all defined points and is of the form

$$
\begin{equation*}
P_{s}=\sum_{k=1}^{m} c_{k} \prod_{j=1}^{n}\left(z_{j}\right)^{z_{j k}} \tag{35}
\end{equation*}
$$

where tie function table is arrayed such that the first m points are the defined points.

Proof: The function can be written in the forra of z and \bar{z} as in Theorem 2 using the function value for the first n points and zero for the undefined points. The resultant will be

$$
p_{m}=y_{1} p_{1}(z, \bar{z})+y_{2} v_{2}(z, \bar{z})+\ldots+y_{m} p_{n}(z, \bar{z}) .
$$

Each term $p(z, \bar{z})$ contains each of $z_{1}, z_{2}, \ldots, z_{n}$ either as such or negatecu. Replacing $\bar{z}_{j}=1-z_{j}$ gives a polynomial in $z_{1}, z_{2}, \ldots, z_{n}$ that contains in general every term of the form

$$
p_{k}=\prod_{j=1}^{n}\left(z_{j}\right)^{z_{i j}}
$$

which is every possible combination of products of $\left\{z_{j}\right\}$ plus unity. Note that every coefficient of a term is formed by summing and differencine $y_{1}, y_{2}, \ldots, y_{m}$ for aefined points.

Since the function is undefined for points $m+1, m+2, \ldots, 2^{n}$ the value at those points is of no interest. A combination of terms can now be made that does not influence the value of the polynomial at defined points. Assume there is an undefined point that would give a firsi order term from

$$
\underline{D}_{\mathrm{k}}^{\prime}=\prod_{j=1}^{n}\left(z_{j}\right)^{z_{j k}}=z_{k}^{\prime}
$$

This term' p_{k} of the polynomiel would be I when the $\mathrm{z}_{\mathrm{k}}^{\prime}$ is one alone or when any other term containing z_{k}^{\prime} is one. Since tiere is no interest in the case when z_{k}^{\prime} is one alone, tine z_{k}^{\prime} term of the polynomial can be eliminated by adding the coefficient c_{k}^{\prime} to every other term containing z_{k}^{\prime}. 4 similar areument can be advanced for all first orãer and higher terms corresponding to undefined points. Thus, all terms of P_{m} except those corresponding to the first in points are eliminated leaving only terms of the form of 35 . Fotice again that the final coefficients c_{k} are a combination of adāition and subtraction of $y_{0}, v_{1}, \ldots, y_{m}$.

XIV. APPERDIX D

A. Uniqueness of a Simole Polynomial of any Inccmplete Function

Given any incomplete function of n two-valued variables no more than one polynomial of the form

$$
\begin{equation*}
E_{s}=\sum_{k=1}^{m} c_{k} \prod_{j=1}^{n}\left(z_{j}\right)^{z_{j k}} \tag{3c}
\end{equation*}
$$

where the first m points of the function table are the definea points, can be found that takes on the function value at derined points.

Given a polynomiel of the form 36 there must be a polynomial P_{m} in (z, \bar{z}) of the form of Theorem 2 passing through the same points as P_{s}.

$$
\begin{align*}
P_{m} & =y_{I} p_{I}(z, \bar{z})+y_{2} v_{2}(z, \bar{z})+\ldots+y_{m} p_{m}(z, \bar{z})+u_{m l^{m}}(z, \bar{z}) \\
& +\ldots+u_{2^{n}}{ }_{2}{ }^{n}(z, \bar{z}) \tag{37}
\end{align*}
$$

Substituting $\bar{z}_{j}=1-z_{j}$ into 37 gives

$$
\begin{equation*}
I_{m}=\sum_{k=1}^{2^{n}} c_{k}^{\prime} \prod_{j=1}^{n}\left(z_{j}\right)^{z_{j k}} \tag{38}
\end{equation*}
$$

Since 36 and 38 are identities their coefficients can be equated term by term. Wote that each coefficient c_{k}^{\prime} is a Iinear function of those of $y_{1}, y_{2}, \ldots, y_{m}, u_{m+1}, \ldots, u_{2}$ that are function values of points corresponaing to products of the form

$$
p_{k}^{\prime}=\prod_{j=1}^{2^{n}}\left(z_{j}\right)^{z_{j k}^{\prime}}
$$

wholly included in

$$
p_{k}=\prod_{j=1}^{2^{n}}\left(z_{j}\right)^{z_{j k}}
$$

Thus, each first order term corresponding to an unciefined point will be a linear function of at most a constant and the uniknown value corresponding to that point. Thus, the unknown (u_{z}) value is uniqueiy cetermined by a defined value. Extending the argument to hisher order terms correszonding to unaefined points, the only unkom (u_{i}) value appearing in the coefficient will be the value whose point corresponas to the term; all cther unknows of lower order having already been rritten as a function of thom values. Thus, the new untrom is a unique function ot anow values.

Thus a polynomial of the form 36 uniquely defines 311 possible function vaiue points in terms of definea points. Thus no more than one polynomial of the form 36 takes on the function values at all derined points.

