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I. IHTRODUCTION

This dissertation develops a mathematical tool and shows how this
tool can be used for analysis and synthesis in a variety of aress.

As digital and analog computer technology has vprogressed there has
been increasing interest in the interface between analoz systems (or
analog nature itself) and discrete digital vrocessors. Specizl coding

schemes suct &as reflected tinary codes and weighted u-bit codes for

-

iethods for trans-

9).

ny

the integers 0-9 have been investigated (1,26,

3

lating from digital to analog and analog to digital Torms have been
extensively pursued (21) including some investigation into decoding
from digital form to an analog revresentation of 2 function of the
digital form (7,1€6). These interface problems have been investigated
largely on an intuitive or cut-and-iry basis.

Tre defining relations describing the operation of digital processcors
are nearly alweys in terms of the symbolic logic known as 3oclean alge-
bra invented by George Boole (3) (1815-188L) and extended by such people
as Wnitehead and Russeli{(30). This algebrz is applicable to two-level or
binary operations which leé Shannon (27) to arply the algebra to relav and
switching networks which are basically two-level in nature. Since Shannon's
early work there has been extensive study of Boolean algebra and its
applications,

A relatively new field that is rather loosely connected with computer
technology is the field of pattern recognition. Many papers have been
written in this field in recent years (2,1%,17,19,31). HMost of these

schemes consider the pattern to be a pattern of white and black areas



from which a set of "characteristics" of the pattern are derived. The
decision (usually linear) as to what pattern is being ovserved is based
on the relative values of the characteristics. The fundamental problem
in all such schemes is to choose a good set of characteristics. Since
most schemes translate the pattern into a finite two-valued two-dimen-
sional matrix a secondary proolem exists in getting high resolution with-
out undue complication. Since the tatterns are observed as white and
black only, multitone (black-grey-white) patterns cannoct be handled
effectively. -

This paper investigates the application of rezl polynomials of
binary varizbles to the above areas. Coleman (6) makes use of 2 real
polynomizl aporoach in the design of core logic whicha is essentially a
linearly sepvarable function problem. ke considefs only the case of a
two-valued function and only fitting "complete" functions (functions
specified for all possible values of the varizbles) with an orthogenal
set of varisbles. This dissertation 1s much more general in approach,
allowing arbitrary functions 5f the binary variables and considering

incomplete functions.



(JARY VARTABLES

%
AN

II. REAL POLYHOMIALS OF ZI

A, Arbitrary Functions

Definition 1
A two-valued variazble is a variable X, that can take on one of only

1 2 .
X, arc X,

two finite values xj and xj where x7, # x

Definition 2:
A real volynomial of n two-valued varizbles is a function f such that

f(xl,xg,x3,...,xn) = KPR, X HE X bl X

+ 512x1x2+513x1x3+...

+ k]EE... -JC]J‘.E...X
I 1 i
5., are

4 kl’ Epgeees

[

(@)
°

indicated operations are

ct
>
®

where xl,x2,...,x are two-velued variables,
constant coefficients of the polyromial, and

real multiplication and rezal addition.

Definition 3:
A complete function of n two-valued variables is a function defined
for all possible combinations of values of the n variavles. An Iincomplete
not complete.

o=-valued varizbles
The domain of a

o 4
cl TW

function is a2 function
Several cbservations can be made 2t ithis point.

complete function can be visualized as an n-dimensional hyper-rectangle
with each vertex of the hyper-rectangle corresponding to a point cof defi-
n .. . .
nite points and

nition of the function. Thus the domain is a2 set of 2
This vaper is concerned

e}

the function takes on a finite set of values.

only with functions that have finite values at a1l points.



Definition hL:

A set of binary variebles is a set xl’XQ""’Kq of two-valued vari-
4

. , - 1_.1_  1_ Wt a2 2 2 _ .2
gbles such that xl x2 x3 cee X and Xy = ‘2 = x3 = L. = xn.

Definition 5:

A real polynomial of bvinary variaoles.is a real volvnomial of a set
of two-valued varisbles where the set of two~valued varishles is a set
of binary veriables.

Any function of two-valued variables can be rerresented by a firnite

E

table listing the possible combinzticons of values that the varisztles
{Xj} take on and the value of the function for each rzoint. An example o
such a table for a complete function of three two-valued variables is

shown in Table 1.

Table 1. General function of three two-velued variables

% %, e I(xl,xz,x3)
1 o ! .
*3 2 1 R
1 1 2 ,
JC3 X2 };l N l
- 1 x2 xl "'r
%3 2 1 Yo
1 x2 x2 .
. x3 2 1 ¥3

2 ! ! B
*3 2 1 )
X2 Xl X2 W

3 2 1 ’5
- 2 x2 xl Rf/
JC3 > 1 B

2 2 2 .
%3 *5 * T




3. The 0,1 Variable

Definition &:

- . . . .. 1 :
The variable z. is a two-valued variable sucik that Zj =0 anéd z_ =

o

It follows directly that a set of variables {zi} is a set of vinary

=

variables.

Definition T:

The negation of a two-~valued variable xj is denoted by x, and is

— — J o
o o= - 1 2 . 2 1
defined such that x, = xj and xj = X..
J J
Theorem l: Zj =1 - zj
- BN 1 .2 L.
“roof: Wie have xj = 0 and zj = 1 then

1 . 2 I

l1-2.=1~-0=1=2z2_=272]

J dJ d

and

1-22=1-1=0=z2+=
b 3

A function of three z varizbvles is represented in Table 2.

Table 2., General function of 295 Zps z3
24 Z, Zq ;(zl,zz,z3)
0 0 0 75
0 0 1 ¥y
0 1 0 EPN
0 1 1 Y3
1 0 1 ¥s
1 1 0 T4
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vWe can now proceed with two theorems that will allow us to find a

polynomial in {z,} directly.
J

~

Theorem 2: Given any finite complete function f of n variables
{z_.} this function can be written as
J

I(Zl,zz,...,zn) = (yozlze...zn) + (lelZ "'Zn)

+ (y2zlz2...zn) Foaot (v, 2, 2...zn).
Procf': Consider the % th point z "Zbk""’ij’zj+lk""’znk

where the values of z are all 0 and the values of

ak’zb“""’zjk

. . . n . .
Zj+lk""’znk are all 1. Then consider the 2~ combinations of rezl opro-

ducts of z and z variables such that none of the n variables appear both

true and negated vut all varizbles {z;} appear either true or negated. The

only one of these products that is not zero for the k th point is the pro-
duct zazb...zﬁzJ+l...z and tne oproduct at that voint is ones Therefore,

the only term of the function 2 that 1s non-zero is the term

CZ Z. eee2.2...00e2_ WwWnere c¢ is the coefficient of this term and we have
ao Ji+1 n
f(Za=O, Z.b=o,o¢o, Z'j-:'o, j l-l’..., Z —l)

= CZp T s 0B yxl =c

J+D)....z_:: S
WeligLls

Theorem 3: Any arbitrary finite complete fumction f of n variables
{z.} can be unigquely represented as a polynomizl in {Zj}‘

Proof: " From Theorem 1

Tnerefore 2 can be written as
f(zl,ze,o o ,Zn) = [yo(l“zl) (1—22) LI ) (l—Zn)]

+ [ (l Z )...(.L-Z )] F eee

1%



+ [ygn_lzlz2...zn]

which is a real polynomial in the binary variables z ZoseersZps and can
2

l’
te reduced to the form of 1.

The variables {Zj} are convenient because z2ll functions of variables
{Zi} may be represented as polynomizls and these polynomials may be

(9

readily derived from a function table.

C. Change cf Varlables

Theoren bL: fny function of n varizbles {z.} can be transformed

s

tc a funetion of n two-valued varisbles {x.} by the transformation

Hy

and any function of n variavles {x.} can be transformed tc 2 furction of n

o

variables {zj} by the transformaticn
) 1
x, =2, (x7 - x7) + x7

3 i J J
The proof follows directly from substituting for x, in 3 znd for z, in L
. - 5]
. R AR~
and from x| # X..
y <
Tnecren 5: Any finite function of n two-vazlued variasbles {xi} carn

1

be uniguely written as a real polynomial in {x,}.

o

Proof: Given tne function it can be transformed to a func-

tion of variables {z,} by Theorenm L znd then written as o nclynorizl in
i
o

{z.}. The function can then be transformed back to the variables {x,} by

o -

the linear transformation 3 resulting in a2 nolynomial in {x.}.
3
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D. 3Binary Tunctions

t is of interest to consider the special case of two-valued func-
tions of two-valued variables, that is, functions which take on one of
only two possible values. These special functions can be used to describde
switching networks and computer circuits much as Boolean algebra is used.

In Zoolean algebra it is customery to denote the two values of a
binary verieble as 0 and 1. Although this choice is arbitrary and was
probably chosen for convenience, it leads to direct equivalence between
a real »olynomial form and a Zoolean polimomial form.

Given a binary function.of n variabies {zj} that takes on one of
the two values C ané 1; the functional form of 2 is identical in form to
the P-term canonical form {5) of the Beclean fepresentation of the func-
tion, as defined by the function table, with lecgical negation analogous
to variable negetion of Definition T, logical inclusive OR analogous to
the real sum, and logicai product analogous to the real product.

Note that the function table of such a function in real varizbles is

indeed identical to z truth table of Boolean logic.
E., The Orthogonal Veriable

Definition 8:

The varizble v, is a binary variable such that v? = - 1 and v? =+ 1.

“

It can be shown (15,17) that a set of variables Vs form an orthogonal
set (A proof by mathematical induction is given in Appendix A.). That is,

given variables VisVosesesVy and a2ll possible products of these variables

vlvz,vlv3,...,vlvn,...,vlvz...Vﬁ the variables and all products as listed



in a function table are mutually orthogonal and are all orthogonzal to a

constant in the sense that

of
2 v:._vﬂ, = o"
k=1 Y7 <7

and
o
2 £, =0
k=1 9%

where k is an index of rows of the function teble. Thus, all terms of a
real polynomial in {vj} are mutually orthogonal.
An algorithm for direct computation of the coefficients of the poly-

nomial in {vj} is develoved in Apvendix 3.

The coefficient c.j o of the term ViVieeoV, of tne v polynomial is
n
—l 2 % ro
®ijeen” o S Vix%sktVmx'x (5)
27 £
. k=1
-
\\\\and the constant term cO is
1 2°
c, == V. . (6)
0 of x
k=1

These coefficients can also be derived from tae theory of orthogonal
polynomials (8) and Fourier series (6). It is interesting that voth ortho-
gonal polynomials and Fourier series reduce to the same system in two-
valued variables. Table 3 is a function table illustrating a particular
function and sets of variables in {zj} and {vj} including the products of

the variables {vj}.

o,
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Table 3. Exemple of a particular function in {z.} and {vj}.

0 0 0 -1 -1 -1 +1 +1 +1 -1 2
0 0 1 -1 -1 +1 +1 -1 -1 +1 1
C 1 0 -1 +1 -1 -1 +1 -1 +1 3
0 1 1 -1 +1  +1 -1 -1 +1 -1 1
1 ¢ 0 +1 -1 -1 -1 -1 +1 +1 P
1 O 1 +1 -1 +1 -1 +1 -1 -1 2
1 1 0 +1  +1 -1 +1 -1 -1 -1 3
1 1 1 +1  +1  +1 +1 +1 +1 +1 L

Lotice that the variables {v;} and tneir products 2re indeed mutually
<

ortuogonal and each colurm Vv, contazins an egual number of +1 and -1 terums,

<

For Table 3 the polynomials in {zj} and {vi} will now ve develoved.

Tne polynomial of the form 2 may be written directlyv.

y=2z. z2z3+zlz2z3+3zlz223+zlzaz3+2z z z3+2z zzz3+3z.zgz +hz z223 .

Substituting E} = l--zj zives

“

)

Y+z.2,(1-2

~—2(1—z )(1-z )(1— )+z (l-z {1~z )+3(l—zl)22(l-z 1%5 3

%3 3

~ ’ I3 ” _1._1,,.,
) z.+2z.(1-2.)z +3\l-zj)a2z3 bziz,24

+2(l—zl)(l—z 3*2z 224 1

n

PN

which reduces to

y=2-zl+22-zlz2+zlz3+2z Z z3 .

The coefficients of the wmolynomieal in {vj} are

Mo
&4
1]
O)ll—’
o
0
| ad
n
onf
s
L} M (o)
d
R,
e
il
|
o}

= 5
8

r|

w
Il
ot



5 1
1 ' 1 et L
c. = = V., 7 = = . c, == Vo, ¥, = =
2 & éél 2k~ 1 3 ? 3 & = ¢35 k c
[a) G
O o)
1 1 L
Cin &7 V.V, 7. =0 3 = ;v o= o=
12 3 1§=:1 1k 2k’ k > 133 1?5"1 Yi3n T 3
& 4
1 2 1 - 2
Chp = 3 Voo Vo 7 = 7 ; == g V.= E
23 7T S Vox"3k T T 5 €103 ° B 2, Y1V ox V3’ T T

Thus the polynomial of Table 3 in {v.} is
dJd

v o Lo - b s g
Y ﬂ( -xl+2v2+2v +2r1f +2v, V3+V2J +V, V2 3) - (2)

-

The ecquilvalence ¢f T and ¢ can be checked vy tue transformation

z = X%l apolied tc 7. Tnis gives
e (vl+l) . (v2+l) (vl+l)(v2+l) (vl-‘rl)(v3+l) (vl+1)(v2+1)(v3+1)
¥ o= - - + - + 2 -
2 2 I n z
a 1 1,1 .1 1 R S T S 1 1
R L Rl S L P Sl A RSl i il re S il e R A el T
101 i 1 1 1 11 1 1
RT3 TR TV T3 TR T T3 YT

=X -
= -5(9-Vl+2V2+2V3+2 l\i'3+v2v vl 2v3).

;_.:
l
ot

Thus the two polynomizls are equiv

o

. Approximztion and Least Squares ~1ut1nb

* In some cases it is desireble to find an approximate fupction of n
two-valued variables that fits a given function to a2 recuired degree of
accuracy. For example, a complete polynemial in 10 variables could have

10 s - s s . .
up to 27 or 1024k terms. This can be unrealistic and unnecessary in meny

applications.
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A common and very desirable methed of curve fitting is the method of

least squares. If we denote the approximated value of the function by ¥,

-
Lu

and the true value by ¥y then the coefficients of the least squares poly-

nonial are the polynomial coefficients that give 2 minimum

The orthogonal variables {v,(} are particularly ccnvenient in least

sguares approximation of complete functions of two-valued variebles due to

the following two theorems.
Theoren 6: Given any Tinite complete function £ of %tinary vari-

ables written zs a real volynomiazl P in the vinary variables {v_}: the
P '~ 7 2

approximete volynomial P Tormed by deleting one or more of the terms of P

is the least squares best fitting volynonmial in the remaining polynomial

terns of 2.

Proof’: Identify eackh of the rossible polynomial terms of P
by a set of variasbles pl,pz,...,pj,...,p,n arranged such that the Piiq to
. 2 J
v _ terms are those to be deleted., The corresponding coefficients are

2

c ’c ’...’c »
172 2n

values ¥, can be written as

The exact function values Vi and tne approximzte function

Ty T c191R+°2P21;+"'+°2n1°2nk (10)

~ | ' 1

T T CqPyxtCoPpy e et CiP

T ] t
where C13CpseessC, are the least squares best fit polynomial coefficients

for the polynomizl terms pl,pz,...,p .

J
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The squered error E is

o N .
z = (v, - 7.)°
1;:1 k k
n
2 1 1 1

1 ] t

-

Differentiating E with respect to <;l,c2,...,<:j and setting the result egqual

to zero yields a system of j equations of the form

0 n
35 [ =4
r= 2 2=y t o 2 e4Py) =0
3c. k=1 i=1
L
or
n . N
2 3 ' 2
z D ¢.D., = V. D
~ 1l 4 ik kLK
k=1 i ¢ =1

. AR n

oo E‘, 2

z c. D.. Du, = V. s
p i 4 “ikSLx 4 Lk
i=1 k=1 k=1 -

n n
2 2 o
> ... =0 except for i=L and ..., =2,
‘ “ik~Lk = . Lk
k=1 =L
Therefore 11 reduces to

n
n ! 2
27¢ Vo Prr
L Lk
'I—:l

or

(11)



1h

W
b

1

which from 5 is the ccefficient of the p. term of the orig
?. Thus
1
c, = c
L L Q
Thecrem T: Given any finite complete function ¥ of

ables written as z polynomial P in {v%} and approximated by
3
pe e o f 10; the mean sguare error o
c%+lp’+l’cj+233+2’ »¢ P of 1C6; © an sguare ex
v * 27 2
mation is
.. 2 2
E=c.,, +tc, eeotC
+ i+ T
J 1 o 2 2 i
ot
2 2 2 2
= Y. = C; = C. —=ees— C,
=1 YK 1 2 3
n n
2 2 ~
=3 ¥ o2
= ¥ = T
k=1 © k=1 F
Proof: Sguaring equetiorn 10 for any given npoil
2. 2
3 Do, FC DA, FesetC D, FC.,.C, . FeetC _C
Ty (clflk CoFor 33k T3+l g+1x bel n.)
27 27k
Scuaring and summing 13 over all points gives
n n n
20, 2 2 2
S 7= (cipy. S €.D. *+ C. B, ..
Yk < i¥ik 2k &~ . Ti71ik
=1 F Rm T U == k=
n
2
+o.etC C.D.q)
o} ? i~ik
2™ 2%k k=1
n n n n n
2 2 2 2 2
DL, + c.P C.D.. Feaot c
2 €1P1x% 2 €35y Z_ 272k Z_ i“ik & T
k= k= k=1 =1 2

inal polynomial

lE.D.
binary vari-
deleting terms

of the approxi-

nt x gives

13)



Rearranging the swmmations gives

A~ A~
2 2
}i 72 = c.c
X 1
k=1 x=1
n
2
+ LN ] ‘-L
k=1
Buv
o°
“
2;- PrPin
£=1
Thus,
gt ;
Z 2
V.. = c,
EX L
k=1

x = (clPlK
Then
n
% 2 2
2 Yy T4
2{—
How
oh
E = .
2 (y

k=1 -~

and from Theorem 6

2n

E = :E (c

k=1

o
“

[
“H.

l,_l

n
!

+-uo+ c

lk+c2n2k+"'

+.l0+ c2-
J

n
13

FA
if

211

i

[

€2Cs —2—1 PoxPik

r

et

. BTC,

+
Pix"C541P541x

(1

5)



which »roceeding as from 13 to 1L yields

]

d from 1B zives

2“ ~ N ~ ~
. & C2 R o°
Y& vk 1 2 "t
P
and from 15 gives
~n n
LA 2 2
=7 Yy T 2 v
=1 - ¥=1 -

Theorems £ and 7 show <that a complete function of

volyncmial in {v.} and dronring terms. The aprroximetion error can be

Although Thecrem & zives z least scuare best fit For nolynomizals in

{v,} the results can bve extended to certain important cases of polimomials

[

of any two-valued varizbtles by Theorem S.

Definition C:

L real volynomial of two-valued variables {x,
: J

are no terms of the polynomizl invelving more than o variesbles of {xi}.
: 9]
Theorem &: Given a finite complete function of two-valued vari-

-ables {xj} the least sguares best fitting poljynomial of a2 form zllowing

all terms of order less than o and any or all of the terms cf order o mzy



be found by finding the least sguares best fitting »olynomizl in {vi} with

(%

the corresvonding terms (i.e. 2llowing all terms of order less than o and

the same terms of order o with x, revrlaced by v, ) and applrying the

J j WA
translation
x, = %{v;(xﬁ.—xl.) + %, .+ X, ] - (16)
J Jad T 1] 23
Proof: Since the transformastion 1& is z simple transletion

- '

and constant expansion, every term of ordsr ¢ in the apryroximating poly-

nomizl in {vﬁ} will give no terms nigher than o in the transformed roly-

v

nomial and only these terms of order o in {x,} corresronding to the terms

Cte

of order o in {Vj}. Therefore, the transformation cf the approximeting

pelynomial in {v.(} allowing 2 set of terms as descrited in the tuneorex
D)
will give an approximeting polynomial in {x,} allowing the corresponding
o

terms.,
The procf goes now by contradiction. Assume that there exists an

aprroximating polynomial Px in {x.} allowing & giver set of terms of order
o but none nigher that is a better least scuares fit than found by the

zrocedure of the theorem. Then the P _czn be tramsformed to a polynomial
P

Pv in {vj} by the transformation

24 (17)

(.
tal

Pv will have no terms of order greater than o and only terms of order o
corresponding to terms of order o in Px. But the approximation in {vj} of
the theorem is the best least sguares fit in those terms, therefore, Pv

cannot be better, ccatradicting the assumption of this proof.

The type of truncation implied by Theorem 8 is very useful since
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well-benaved functions tend to have the smallest coefficients on the

highest order terms.

v

G. Incomplete Functions

A set of n two-valued variatles carntake on exactly 2" nossible combina-
tions or points in n-space so that a domain is inherently implied. EHow-
ever, a varticuler function may =simply be not defined for some of these
vossible points. Table L shows 3 partially specified or incomplete func-

tion of 3 variables z for which cnly five of the eight points are

1,22,23
defined,

Table 4. Ain incomplete function of 21’22’23

24 Z, z- f(zl,zz,zﬁ)
2 0 0 T
0 1 C yg
o] 1 1 73
1 0 o T,
1 1 1 K

pass through these points each ziving a different set of values to the
undefined points. Thus, there is no satisfactory single pelynomial that
can properly represent such & function. There are z couple of nolinomials

that are of interest related to this problem, One 1s = simple polynomial
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passing tnrough the points and the other is the least squares best

fitting polynomial.

A simple »olynomial can be written for an incomplete function that

(B

is independent of the undefined points. This is sheown in general in

Appendix C but a simple illustration will suffice to demonstrate what

5

Consicer the three variable function *table of Teble 5, All functio

values 2t defined points are symtolized by 7 and at unde

Table 5. 4 complete table of an incomplete function

> o~ -

23 Z, z1 -\zl,zg,,3)

O G 0 7

o o) 1 u, (andefined)
3 -

0 1 0 Iy

0 i 1 y3

1 G G o,

1 0 1 %(m%ﬁmﬁ

1 1 0 u, (undefined)

1 1 1 v

A function in z and z can be written including the undefined roints

as follows

f(zl’z2’23) = Vo21%p%3 * UyB T2y * lz2z3 * ¥3292524
F)B1 7%y Ut By F U2y ¥q2iZy2y
Substituting —} = l—zj and grouping terms gives
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f(zy2525) = vy + z.(u-vg) + 2,(7,m7) + 25(5)-7)

( ) + z.z (us—yh~ul yo) (18)

Z12p\WW 3™V Fg 1%3

* zyzglugy)=v, vo) + z12223(y7'u6'u5 ¥y, Yo W¥p)

If the unéefined points are treated as "pronibited" or not allowed

then the following is tr

e
1]

oy L 3 = L 3
Th m f and only if the z_z z Xy ar
ez, term exists if and only if th zlbg,zlLB, o zlz2z3 nd 242z,

and zlz3 terms exist. Thus, the coefficient of the zy ternm cen be dropped

if it is added to the z.z. and z_zZ. terms and subtiracted from the z.z.2Z
RO 13 v 1%2%3

term.

term exists if and only if the z,z,z. term exists, thus, the

The z.2z
Lo -
1°3 17273

coefficient of 2,2, can e added to tae ccefficient of 212223 and tne
173

z.2z., term dropred. The z,.z, terr can be handled simiierly.

173 273

Performing these groupings on 1§ gives

- v -y, 7o)+ (ue=rmus va) o+ (vg-7,)
> 4 4

wnich reduces to
£(z1,2,,25) = 7y *+ 2, (y,m7g) + 23(7)=vg) + 292, (55-7,)
(19)
+’212223(y7—y3-yh + Yo)
The function 19 passes through the defined points of Table 5 and the
coefficients are independent of the undefined function values. Cf course

if any point of undefined velue is substituted in 19 some definite number
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Wwill result but this number if a Tunction of the function values at defined
points.,
The next theorem is a significant property of this simrle function,

Theorem J: Given any incomplete function of n two-valued vari-

ables defined at n points; one and only one volynomial in {z_} of the form
J

P {z.} = c.p, + C.0, Fesot C.X (20)
J 272
passing through the defined points, can be found. The {c,} in eguation

20 are constant coefficients and {pi} are found from

Il Z..
W
o, = II (z.) 9%
=1 Y
vhere the i index represents tne i th Gefined point and z., is the value
JE
of zj for the 1 th defTined point. Thus, ?S is a polynomial that has, in

general, n terms.
Proof: . The existance of 20 is showvn in general in Appendix C

and the example above of Table 5. The unicueness of 20 is shown in general

in Appendix D and is illustrated oy the following example using Table 5.

Any polynomial in zy represents unicuely (from Theorem 3) some com-

slete function say that of Tabvle 5. Tnis function can be writlten as

P =3 z. 1 Z <+ 3r E‘ 7 +
-s(zl,z2,z3) Y921%p%3 t W 2252 F Uply By * V3ZiZy0g
- (21)
+ 7 12223 + u5z122z3 +u6zlz223 + y?zlzzz3
and also from 2C
T = + + + +
:’s(zl,z2,z3 ) ¥ CpZ, * CaZy + €212, + C52)2,2, (22)
Substituting z, = l-z, in 21 gives

:'
<



P zZ = v z -V + Ns : Ty =

(le 234 3) Y0 + l(ul ..O) Z?-(f,\ .,O) ZS(JL’- Jo)
+ Z_ZQ(YS_TQ_ul+yO) + zlz3(u5 -+ )
+ Z.2 R z (r u, -

+ 7Y =T, (22)
T

Since 22 and 23 are identities then they may be ecuated term by term.

0 = U=y =y +7 . Q= +7 =7
ETILT S L L~

-7 ..u

‘T Vi 3 Y

Thus P ( ) cescridbes ithe complete function of Teble §. Ivery

7192?3

complete function value of Pﬁ(zl,ze,zﬂ) is uniguely determirned. Therefore,

5 3
(z

1’22’" ) is unigue from the uniqueness of polynomials of complete

functions.
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7z
Table ©. Example of a simple rolynomizal T

(0]

z z, zZ Fo\2,2
3 2 1 ( 2722 3)
O O O i
s
0 0 1
“0
A .
Y 1 0 -
V2
0 1 1 X2
°3
L 0 o I
- l O l 3T
1 i 0 Ty E
. L L) g A
1 1 1 .
T
This means that every other rolyncmial rassing Throush the defined

points must have in one or more of its non-zer
2 Z#T
pp = 11 (2,0 77
19

where L is an index corresponding to an undefinzd

Anctrher important

the least sguares vest fittirng epproximaticn.

.

be thougnt of as a function defined on all of
In zeneral there is nc orthogonal representa
therefore, there is generally no polynomial t:

be reduced to a least sguares best £it simply

finding az least sguares best
translating to {vj} has no great advantage.

.

finding the least squares best fit is

telynorial releting to an

na

118,

The

inconyplete

t can e

fit beccmes a far more &if

gener

zeint of

=

by dropping terms.

.;‘

al

the incomnlete

function is

ete Tunection can

Thus,

cult task and

appreach to

outlined below for generalized
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variables {xi}.

Given a finite incomplete function of two-valued variatles {xi}defined

<
Tor ¢ points the least squares best £it of the form

V. T C.B, * C A FTeeet C X
Xk 171 2~2 * mm

where DysPpsesesD  2re the allowsble vroduct terms (including possibly
did

2 constant) of {x.} may be found as follows
o

g -~ 2
E = (:.'“",'—:’r)
x=1 -
{,:
= :E (7. =C.D.. =C Dr.meee=C D .)2
. “k TIlTlk 272k mTmk

Differentiating with respect to Ci9CpseeeC and setting the results
equal to zero yields the system of L = 1,2,.¢.,1 eguations in m unknowns of

the form

oS

g g g
2 tees S o = -
°p X Frx t .,_Z__l %ok & Foix ._2_;1 ¥’

[
v
i

This system can usually be sclved for c p9eersC toc give the least

12¢
sqguares nolynomial coefficients desired. Note that to find a best 10 term
polynomizl requires sclving a system of lb linear eguations., This process-
ing is fairly amenable to az digital computer solution. In practice it
turns out that using a system of variables {zj} tends to give a fairly
simple set of numbers for the system of equations.

The preceding meterial provides a firm foundation for the applications
that follow., The most significant conclusicns are:

1) Any complete finite function of two-valued variables can be

uniguely written as a polynomial in any set of two-valued varizbles.



2) The polynomial ccefficients may be readily determined by the
methods of Thecrem 3 or egquations 5 and € then transformed tc any set of
wo-valued variabies,

least

[
o]

[a 1]
e

3) The orthogonality of the variable {v, 6} leads to ©

n

m

squares best fitting volynomials of complete functions.
L) Any incomplete function cazn be written uniguely in the form of

J

Theoren Q.
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the vearizbles {z.} and &

L - bt - o~
£{v .} has vzlue + 1 fc

o .
I 7 = =7 =z
AR R L R
( Ly 3
= his his = =M+ + v Vot - 11}
_V\L;,.E) 2\\.1 + \2 + \,'-1_.7’2 Ry
Teble 7. Logical prcduct truth table
- .. F e - 3
w2 ¥y -k.fl’.«e}
9] Q 9]
o) - r
~ - J
1 c C
1 1 1
- . . - -~ - lorer Y
2. Legieal inclusive CF v, 7 v, (Table C)

Y = - -
e
1
B - = | L vr - - oty
A Vea7p) = 5Ly vy - vivy)
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fv(vl,vg,v )

Table 11, HMajority logic trutn table

‘
:
-t
5
-t
“4
b
Py
;
”

(@]
}_}
o
(@]

e 1 1 1
1 C G G

ft
[
bt
[

(2=
=
|3
[

£. General ©dd parity function vy ® v, @ v, ®...0 v

~F T

.} contains an odd pumber of 1's =né

5
~
N
[——)
n
i
Q
Polt
N
N

—1

Ceneral logical nroduct W eHoeHoe eee oW

joto

f{w,} =1 if Wy aWoae e W, zre 211 1 and T{w.} = O otherwise.
Y i J

for{z.,}
J

122.. .zn

The last two logic operaticns are of particular interest becazuse they

™

give & logic interpretation to the real products in {v,} an {z }
The functions zbove are written so thnat tne two values of the func-

tions are the same zs the values of the depencent varizbles aand have a

o

direct correspondence to the logic variable and functions. Cive

D



N
\C

functicn fl of twe other logic functions £, and £
< o)
£ (f,,f.)
172273
and given the corresponding »olynomials as zbove in gz and vy £, ,F
z,72,7 2,
- < 2
and P P 2 3
and Iv 3T, 9T, s then
1 2 '3
fz (fz .7, )
1 "2 73
and
o o F-3
o (Iv ,JAV )
1 2 '3
will correszond to
Pal 41 Ed
I (I L )
1'72°73
such that when £ (£.,7.) =3, £ (£ ,f ) will egual 0 znda #_(f_ ,7 )
177273 z Z. 2. V. V.0V
1 Z 3 £ < 3
will =31, £ {£ ,f ) wiil egual 1 and
Z. I, Za
1 P-4 >
.f’
£ (
1

3. Prcofs cof Trneorems cf Logic
The capability of replacing logic crerations with polymomizl functicn

leads directly to proof of 3cclean leogic theorems in terms of rezl veri-~

e g o i ]
the intent of tris naver to

algebrae from real variable theory., It is nct

go that far. However, some samples of proofs are o

of theorems on powers of the variables {z,} and ¥r,} ere needed firsi,
J
iy 3 n
Theorem 10: (z.)7 =2z, ;2 1,254,
J J
- - - LI Y Z l_.r\ 3 2__’1 -
Proof: From definition & 2.=C and z =l. Taus
[ <
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L, Thecrem on distribution (v, V w. ).(w, V w,) =w. ¥ w..v,
4 134 X D L o O
YWriting the left hand side as o pelynormial in 232,52, Zives
) e
Z. + 7z =z 7 z. + Z_ =gz = 2" 4 = —e =~ e o
( 1 2 al 2)(4.1 aJ 611—3) Zl blzg _4122 LlLB
which eguals
2 2 2 2
Zo v 2,2, -2 %, * T Z. +t 2.3, =2.Z.Z%. —Z_%.=Z2,Z~ % +2_Z,Z
“1 i72 Tite 173 2%3 TiTe3 TiT3 tateTz titeTs
T A i~ Y -~
shich reduces to
Z, * Z.Z, =Z.%. * %,z + 2 =2 - * oz -
2 ¥ 23y “Z 2y T 72y F oz 22,2525 ~Zy2g * 242,25

,
2. t D%, ~Z,Z.%. T Z. + Z.%_ —z-kzhz3)
Pl “< i

3

A

R . R B N b .. [ N T
wnich can e writien as {toe tfoolesn SCUATLON TV Wae ‘:3'3 .
£ <

The pclimemial representation of an; 3oclean Tunction can be readlly
used directly to develor & logic circuilt. .lcte thaat the nezations of tae
varizbles are not necessary in sucn & systenm whereas the usual Zoclean
lczic expressiocons iavolve negation.

L ecircuit for providing 2 logical Turciicn of several lcgiczl vari-

function
T zZ = + .:\ +.l.+ c T.\
flagh = egpg * o2 “n*a
can e instrumented ty & logic circuit thet will accept both positive znd

negative weighted inputs for the positive and negative coefficients., It

cutrut voltage

i
=
I..J
el
i
<
®
o
%]

should be 2 type of threshold circuit thet w

(9]
o]
2]
H
[0
0
J
O
3
0,
.
s
(]
ct
o]
I\
[
O
o0
e
Q

a2l 1 when the sum of the inputs (sign considered)

greater than sny number corresponding to the voltage value {(loading



considered) between logical 0 and 1. The inputs can be made up by renerat—
ing the » terms and using anpropriate weighting resistors. The v terms
can be generated readily by standard logical AD circuits since the logzical

vroduct and real pro
Such a logic system has some rather interesting rronerties, 3Jince
the sum of the terms neminzlly takes on only one of twoe values the neax

surming values are well ccntrolled. 3Since there is & distinct difference

5 d - doww £
cetween the two sums the

is noncritical. Another interesiing vroperiy is thst some of the weighted

hirgh nrobabllity of the circuit giving the correct outzut.

Tnis could be sn important advantage ir dizital zrocesscrs vith extrene

reliazility recuirements., In general, the volyncmial instrumentetion
will e mcre complex than normal Zoclean logic instrumentation although

S pram 1y e —~ 4 ~— -
bles can be & simplifying factor in many cases,

i very interesting proverty of the {z,} polynomial ferm of = 3oolean
o

"

have value ir some cases is that the real summ=at

\

function that me;

«

Ia -3 - T A Dvym a T D e~ Ta 2 ——nn
Theorenm 12: fiven any complete Tunction of two-valuedld variables
4 - S - -y e < L -, Fary LS -—— o~ 3 R
written zs a polynomial in {z,(} with integer function values, =11 cceffi-
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IV, WEIGHTED 85U DECITIOL LOGIC
) o 3 : 1 o
Ao fundanmentsl Theory

{w, } if there exists & real vclynomial with {v.} wenloced by {z.} of the
oJ J ~ ; 3
form S

n? 2 n
L amy [~ ') A dlz =ositive and waon ""(" ) 1 Telee or 0 3 S
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set of Scolean varizvles {w:} if there exists & rezl »nolirnorial in terms
o

= . 4 - . < Y 2 ~10

A alpl d,_.r2 T e v e c‘.n__.n o] (._.-rj
Where aw’ag"“’°n’b are rezl numiers sucn taat when f(:a,uh,...,‘r is
true (or 1) X is positive and when f(wj,vg,...,wh) is false {or 0)) is

negative.
There nave been many papers (4,6,9,11,13,18,22,23,24,25) recently
studying lineerly separeple Tunctions. This interest comes aboul decause

such logic circuits as core logic, perametren logic, and traznsistor-

resistor logic lend themselves naturally tc instrumenting linezrly
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and C. Czov (4). 211 such methods are guite

sone cut-and-try wori,
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211 linearly sevearable functions are Unate (22) and 211 Unate func-

tions are linearly seraratle for three or less variables sut, Uneate

(6}

-

Thus, in this area exhausting thres variable functions is rnot really very

A hypothesis without nroof may seem out of order in a paner such as

this but the hynothesis is definitely of use in meny cases for finding
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or only one variable is non-zero then P from Thecrem Q will contain the

constant term and all first order terms plus =z term for ever
fined peint of f. Cince 7_ is unigue, then all other volyromisls pass-
ing through the defined points must have one or more non-zero terms of

and all first order terms of {z_,} then all other polynomials vassing

[or]

through the defined points of 7 will nhave one cr more non-zerc terms o

crder higner than 1. Thus no polrnonmial rassing throush the defined
points of T other than P_ can be of the form of 21, "L LLT,
<
Theoren 1 a metnod Tor finding the weights of weirhted codes

if such welghts exist znd t

fined is observed.

2. Decodinz lca-weightsd Codes

tre simzle pelynomial P_ of Thecrem 8 can aid in keeping the deccding

12. Thais code is a complete function shcwrn with both the tinary vari-

2 3
a3 reflecteld binary and is useful in mechanicel analcgz tec digital con-

verters.

Table 12, Reflectel vtinary code
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Terle 13, Continued

= S s vy F()=s

T 1 i 1 4g
Two rezl polynomials describing Tatle 13 are

2wy 57,5 75) = F{35+TY 1,228 120, v +hy, vosBy v,

C. Theorem

Theorem 1&: Given any rezl ordinary polynomial

set of wvariatles Bqs8psee ey WHeTe gq38550 0057, ar

set of two-valued varigbles such that {gi} are =2acih

- o - -

welghts © 0. .U yeeeaD
Tes 0*71%72%* 2

order no mere than o.
Proof: The variable z, can be written
z, =D, + 0,2, + 0.2, teeet U_Z .
=i G 1711 2721 *" "n'ni

, then 7 can Tte written as 2 :

I
[
th
o]
H
[e7)
1]
L
O

(=N

21
o

The highest order terms of f{gi} coentairn at most o termsof {g.} and since

{gi} are each linear in a set {z

o

in {z..} is o.
ji

} the order of the high

(W]

5
0es

e
L

possible

ternm

- det
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This theorem has application not only in fitting polrmomials of
weighted code Tunction but in arproximations. Fote that transformation

from {z .} to any set of two-valued varizdles {xii} ioes not increase the
g e
order o of the volynomial,
Corollary l: Given z function £ of a set of weighted code functions
{gi} and an approximate pclynomizl in {Ei} of crder ¢ there can be no
vetter fit by any given criteris than the best Fit polynomial in {zﬁi} of
rder C.
with 2 best Fit cri;eriz such as least squares the Test it in {z,.}
g+
of crier ¢ is usually Tar surserior to the Lest Tit in {g{} of order o.
Trom Corollary 1 the =zreat usesfulness of the corthcgornzl variables

D. Zegmented Appreximatien
Sezmented avproxzimstion is the use of different polynomials te
describe different parts of a2 given curve (15,28). This can be particular-
1y userul in incomrlete functions., Iote that the functicn f of z weighted
code variable £s is compiete in {Zji} only- if =5 is complete thus taking

n
on exactly 27 values,

g



metihod ¢f Section IT

t) Corbine 2) and 3).

function ¥ i it is knowm for otner values (this is dene in

~a

o ] - ) - - P
Tzble lia, Incomplete three variable sgusre functicon

or use scme form of extrapclation tec find the additionzl poir

3) Partition the domaein g irnto sets of voints thet are complete in

z A z

3 “2 :
- .- - =f = ...2
o s i "y #(.) = =
0 C 0 o 0
1 0 o 1 1
2 0 1 0 L
3 c i 1 3
L 1 0 o i
5 i 8 i 25
& 1 1 0 36
g can be partiticned at the first four variables ziving the complete

function of Table 13.
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A z
2 1
- 2
z -' r. () =2
2 1 1 -
0 0] e
B s 1 1
2 1 0 L
3 8 1 1 S
= - KN ll L ' ~
1(23525) = 2y + bz + dzi2)
he rermaining part of Table 1t 7 = L and g = 5 Fform the comnlete

a

Z. Z.
z L
"
=
= W W £.l.) = ¢
z A L () =g
o 0 L)
0] 2 25
£ (z,) =16 + gz
2( l) 1

= & is simply £.(z) = 3¢, These functioms can now

the fact that z, = 0 for Table 15, z, = 1 and

-~ - Ve
z, =1, z, =1, and z, = 0 for the velue at g = 5.

z3fl(zl,z ) + z3z2;2(zl) + z3z22113(z)

= b = . —
23(zl+pz2 Lzlzg) + 322(16 ,zl) + 36232221
z +hz 416z +hz. 2 +8 _l .
z_+hz +lou3 42,2, czlz3+lézgz &9zlz2z3
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but z

1‘7_223 is "not 2llowed" thus

t(2)525525) = 2 +h2, 318 BT OE, 25T 02,52,

B

Y“ne technique arriving at 29 is gquite similar to the system of finding

a voiymomizl in z and z deseri

g v

the functions f,,f_  and £_ could te approximations in general,

13;2 3 -

The least sguares best fit technique 1) is slwers tetter than these
cther arproaches (at least in a least sguares sense), however, in som
cases the calculation of the least squares coefficients might Tte nmore
expensive than the addeld complexity.

L. Interpolzstion

L Tunction of Tinary variables can be interpreted to have useful
mezning waen the binary variables are allowed to tzke con values other
than the twe defined velues for 2t lsast two kinds of weighted functions

for three variavles irn Table 17. Ixtension to more verisziles is

23 Z, zq z ()
C 8 a a Yo
G 0 1 1 v
‘1
C 1 1 3 ¥



Table 17. <Continued
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Let z. te =2 continuous variamdle. if z, and 2z are held constant
.L Pt -
3 o 2 A 2!, VoLasTa 13 e e d . ~ =% ~
the function Tiz.,2,,2.,) wiil e 2 linenr Tunecvicon in z, passing unrough
4 < 2 -
e S Lo S 3 N S e - S e] - Bl - e A < <+ ~ren T £
the pair of points defined by the value of T correszending te tns value o
;i L]
St T 3 1owed - rals = = +h
z, end of z,. I z, is azllowved to lalke on trhe values - 3 z, < 1T the
2 3 1 D - L - 7
se 4o 2 T A - Tar 3 T3 e b - "l - e =
resuit Is shown grapalcally in Tigure 1. Trem tols zrapn 1T cen te seen
e - - 5 - - - -~ oS e - < S 3 - St ~
that the variztion o z; 1s a Torn © linear interncleticn betwesn defined
—_ 3 o +3 e T M a 2 2 man 3 L P as
soints of the function., This interpclation can ve used tec give ITilner
3 it 2 A ~e ~ e - 2 ine .«
zrained” functions oy replacins the varichle =z, ty Z or mors Linary vari-
—_
,
b . - ., : - ' 3 m o T okt T3 o q
2bles that will zive severzl points on interpolating line, For example
=% 5 ‘
z, = -L-[z . F 2z, * Lz_,,_,]
- 1.'— -— LD
; -
s Ko o] - . o - L. .~ - - -
will give J points orn a line froom - T ot 15 1T 2,4525592;, &Y€ Orzanized
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that this interpolation increases the number of terms of a {z,} polynomial
representation but not the order of the polyncmial since z, is linesr in

-

the added varizbles.
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will be cuite zood. The slope of lines thrcugh adjacent
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ed above will take on the value of the derivstive tetween the points by the
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Figure 1. Interpolation ekample
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5

law of the mean and as shorter and shorter line segments are taken, the
derivatives of adjacent curve sections become more nearly equal.

Inother weighted code system that lends itself to internclation, in

Teple 18, ZIxtension

N = (&)
(@] o (]
b= [®] (@)
[ H (@)
1 3 +

[S3}
(]
’._J
©
3

-r
Y
b
=4 bl -
> l £ l e
2
- PN - .
o] l v 4 Y
O

Feflected binary codes have the characteristic that in zoing from

one intezer of z to an adjazcent cne only one of the birary variables
changes. If the domain z is visualized 2s z cube (or hyssrcube in genersl)

this amounts to going from one vertex to an adjacent one. If a2t any point

to change continuously from G to 1

fu

the variable +trhat changes 1s cause

W

(or from 1 to 0) instezd of discretely tiae result with respect to f will
be a linear change in the function value from the value of the orizinal

vertex to the value of the next vertex. ‘It must be linear because the

=8

t must 2a3s

function f is linear in any single variable of {z.}Jend

through the adjacent function values by the nature of the binary polynomial,
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- — 0.0003000z.z.2
N iz

~0.0005050z, 2

(¥ V]

¢

and the lezst squares best fitting polynomizl T, of order 2 for

-0.00¢ 0.038100z
Vel - LUoe Z.Z
TTIIERRs 2% T YR 3%k
and the approximating funciion P of T is
(2 325 9%092) 32nsZs) = 2,5 (20 32092092y 322 142,20 A 20 320 sBnsZy) o
L7 27 3747 57 ¢ o 1717273 b go5 2v o123 L
- : < - e . - - - =
7y contains 2C terms and P, contains 11 terms, therefore, a2 totsl of
o
37 weights are reguired. 3Since the sine is a smooth function and can be
arproximated guite accurately with linear interpolation of L° segments,
interpclation for z, is definitely possivle. Using
-~ " /&N ! ~ } 9} o 2 ~n \
z. = 1/5L {z, +Pz _+iz_,+0z_ _+ilz_ +32z,
1 AR R R B 127 >%%51/
will give an angular resolution of 1/15 degree which is in the some order
as the accuracy of the sypproximetion F. IZvery term in which z, appeared

would now have ¢ terms giving a total of 127 weights recuired (cne For
each term of ?7 and PQ cortaining 2 z. term), however, many o

.-

coefficients would te negligibtle reducing the totsl numver of weights

to about 30. Thus, a weighte
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a sine functicn outpu

accuracy of about 0.1%.

G. Applications
There are meny applications of functional decoding, znd a few of

the more interesting ones zre mentioned here.

A fairly common problem in radar systems or any system reguiring
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crocessing of coordinate data from angle sensors is conversion from =

_digital shaft encoder (usually in reflected binary) to trionometric func-

tions. Tunctional deceoding is very convenlent in defining 2 conversicn
cirecuit,

Although conversicn to analeg functions is the most obvicus, con-
version to a digital number can a2lso De corvenlent. In the sine function

Tre Imvortant fact here is that onl

= %

and subtraction 82 needed z2nd nct multiplication, division, or taking
povers. This principie could be extenced to any Tuncticn.

An interesting pessibility is that of using functionzl decoding te
find an apprcximate product of two numbers. 2 direct approach or cuarter-

sqguere multiplier apoproach might be used.

=l

t is important to note that the rezl pol
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digital functions of several variszbles can require extensive storege cr

long calculation.
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VIIT. Conclusions and Swwnary

13 ey e S 3 - Py . Ea-] Fal - L . g oS -

rhig dissertation has develored tie idez of real nclynomizls of binery

variables and develormed and suggestédd severzl zress of enplication.

o o ~ e ~3 EIRCU N - Ty > o T 5
Several uses have ween oiVern Ln TLe areas whaers Zoolern arLgecra 18

Tre study of weichied codes seers to Tall naturally inte the catesory
cf real function ansliysis., The very lefinition cf weignted codes is ncre
meaningful in terms of real warisbles.

Tunctionzl decoding is n~ncther netural sprlication., This cdecoding ceax

Pattern recozniticn is the lesast develcred arez of zpnlication given

in tnis dissertation. This is not due to its lzck of impertance, on the

1) a different technique for proof of soolean logic theorems and

2) an inherently reliable logic system;
3) 2 simple non-negation logic system;
k) a hypothesis on linear separability of Zoclean functions;

5) 2 representation of and 2 theorem on weighted codes;

ecoding circuits for non-wezighted codes;
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T) techniguss for circuits to zive funciions of
8) a unicue method of storing (dizitally) function tables.

“ .

Some obvious extenrnsions of this materizl are:
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variables and all possible products of {v.1}.

ables VsVpseeesV and the products by

A. Orthogonality of the Variszbles {

n 1?

mutually cortnogonal such that

n
2
P.. 0. =0
< Tik¥ik
k=1
n
2
o
S 5.p., =2
o, TiEtik

n
2 -
ep., =G
k=1 -
Proof: The proof is oy methematicel 1

n=2 is given in Table 20,

ncuction.

ané -1 con-

(30)

(31)

(32)

The array Tor

'

Tgble 20, Varizble table for ViV,
Dy 2, 23
% ¢ vy v, ViV,
1 c ~1 -1 1
2 ¢ -1 1 -1
2 c 1 -1 -1
L c 1 1 1




It is readily seen that 30, 31, and 32 held for Table 20, Note also

that the sign of any or a2ll columns may be changed and the resultant array

v

~

still satisfies 30, 31, and 32, and further that

ik “ik
. S < S o A R . c o matn .

Now consider the 2 x 27 array for n veriables given in Table 21 where all
the conditions given for Table 20 hcld true.

Table 21, Variavle table for v.v ...vn

12
14 c o T eee n
-1 2 “.n
2°=-1
1 c Vl.. Vgl s Vllvglo . can
2 e v v v,V 3
12 22 *ee 12°22***"'n2
v v
3 c Vl3 'V'23 s Vl3 23-.‘ n3
[ ] . . . [ ] .
L] L] L] . . .
[ ] L] L] . L] L ]
n
2 o v n v a se e v nV nl «eV n
12 22 127 22 n2
if a wvariesdle vn+l is acded the new arrzy will be of the form of Table
22. TFrom 30 p _ is orthogonal TO D, 4D, sesesE since
Ton =132 Ry
n n+l

2 2
2 (+l)p.k = 0 z2nd z -~ (_l)Pj_v = 0. Considering the rows k=1,2,...,2
k=1 * k=2 41 *

Il

each column » n is orthogonal to c,pl,pz,...,p n+l except pi and
27+ : 2 -1 :
© for which
=.n+l . '
2 +3 n
2 n
D.. D . =2
.z kY n+i

N
I
=
N
N



and
n
2
Ea P p+i P op+d
k=1 27 "k 27 "k
Similarly for k=2"+1,

D

every c’pl’p2"""2n+l

-
n+i

2

n

x=2"+

A

and

3

2

=1

[O2Y

= 27
n n+l \
2+, 000,52 each cclumn » A
2"+
except p. arnd » for which
i S I
o +1
_oF
n
=2
i
o2 = g
n,.n _ . n+l
27+2° = 2 .
n+l
2 n .
iP5 V2, BP0 =2
¥=2"+1

is orthogonal to

Thus, the conditions of Table 20 are true for n+l if true for n.

Thus, 30, 31, and 32 hold for any number of variables {vj}.



Table 22, Variable table for Vlva°"vnvn+l

k P c P DA, cee » » D oo P
2" ! @ 2" 21 2™ 2"y
1 L ¢ V11 Vol e ViavertteVnl i e e V1Ve1
te e s 00 | o+ + K} 'YX
2 + ¢ V12 Von VioVan*ttVno V1o Vop HATACPIEEA A
+ ) P ] -+ + ) K]
3 1 c Vi3 Vo3 V13Y23 Vn3 V13 Va3 V13Y23 Vi3
n .
2 +1 c V12n v22n ves vlen v,),)n. sV ?n+v12 kvegn sae +v12n V22n' . .vnzn
o~ .
2 +] -1 c vy Voy A o V)1Voy e .vnl “Viq ~Vo1 ‘e -vllvizl‘ . ‘an
AN _ _ _
a2 -l c V1o Voo e ViaVant e Vio Vie Vop o eee pVopt Vo
?n+l -1 c V. AN v, ,.n . Voot Vosles oV D=V N VN .o -V. N V.. v _.n
- 12 22 tee 12 a0 ne 12 22 * 12 227" "n2




ZITI. APPENDIY 3

2 {v.}

h
<

(=8

A, Coefficients cof a Pelvnomial
Given a Tinite function of n two-valued variables the function can be
written as a polynomial in z and z by Theorems 2 zand 4. If this is done

the contribution to the function due to a coefficient i, is
o

wnere zl thru z. are Q0 anéd z, thru.zq are 1 for the row of the function
tavle with function value ¥y, . This term of the function in z,z variables

can. ve transformed to the functicn in variables'{v;} ©y the transformations

l'f"v’_.' l-—V;
2z, = ——34- z, = ——Ei . The y. term in variables {vi} tecones
J = % - 9
-
— (l"v1)(l—v,—)00~(l-v,‘)(l V. l)---(l v ) . (3)“1')
o2 1 2 3 3 n
Note that in = function table in {v.,(} the row of varistles corresmond-
o
ing to the functicn value y, 1s -1 for vy teru v, snd +1 for v_ . thru Ve
- . - L

Zxpanding 3k each term of the volynomial in {v.} of the functim zopears

!—|\

5 - o . “o. . - .
once and only once and nas z coefficient +—E-1f the product of variables

{v.}appearing in a given term is positive for ihe row corresponding to

I

function value ¥, and the coefficient is - — ot therwise.
i o

o . . . - - ~ SO
Since the polynomial in z, z 1s made uxn of 2

terns ¢f tne form 33

i . C . coq - n .
then the polynomial in {vﬁ} will e the sum of 2 terms of the form 3k,

o

Adding the contribution to z v polynomial term from each term of the form

34 results in the following ecuations for the coefficients c, j . of
’- ’.D.’—#A

the vivj...vm term of the v matrix
Al
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XIII. APPENDIX C

A, ZExistance of a2 Simple Polynomial of anv Incomplete Function
Given any incomplete function of n two-valued variables defined at m
voints, a polynomial can be written that takes on the function value at all

defined points and is of the form

(35)

where the function table 1s arrzyed such that the first m points are tae
defined points.
Proof: Trne function can be written in the form of z 2nd z as

in Theorem 2 using the function value for the first m v»oints and zero for

the undefined points. The resultant will be

P = 12y (z z) Y%, (z,2) +...+ ymp“(zgz) .

Each term v(z,z) contains each of ZW’ZQ""’Zn either as such or negated.
Replacing Zj = l-z, gives a polynomial in Zys2pse 0%, that contains in
d - 'y

generzl every term cf the form

LI

z
A
Jk

el
c__..
L

-

which is every possible combirnation of products cf {zi} zlus unity. Hote

1=
that every coefficient of a term is formed by summing and differencing
l,yz,...,f for defined vpoints.
Since the function is undefined for points mt+l m+2,...,h the value
a2t those points is of no interest. A combination of terms can now be made

that does not influence the value of the polynomial at defined points.

Assume there is an undefined point that would give & Tirst order term from
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3 Sk
» = I (z,) °" =2
=1 7

_ of the rolynomial wculd be 1 when the z,_ is one a2lone or

i % S o !
This term Dy .

1
when any other term containing Zy is cne. ©Since there is no interest in

| ]
the case when z_ is one alone, the zy terr of the polynomial can be
1 1
eliminated by adding the coefficient ¢, to every other term containing z .

T
EsS

4 similar argument car be advanced for zli Tirst order and higher terms

corresponding to undefined points. Thus, 211 terms of P_ except those

corresponding to the first m points are eliminsted leaving only terms
of the form of 35. INotice again that the final coefficients ¢, are a

combiration of addition and subtraction of Tas¥ysesesy o
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X1V, APPLIDIX D

A, Uniqueness of a Simple Polynorial of any Inccmplete Function
Given any incocmplete function of n two-valued varisbles no more than

one polynomial of the form

Ca
W

(3¢)

0‘..:.

m n
P =
T I_I
where the first m points of the funciion table are the delfined points, can
be found that takes on the function value at defined points.

Given a volynomizl of the form 36 there must be a polynomial P in
TOLY DOL; -

(z,2) of the form of Theorem 2 passing through the same points as P_.

D = g 4 o) = - =
P, =¥ o, (z, zZ) + Y505 (z Z) Faouot ym_m(z,z) +u D l(z,z)
teeet u _p (2,2) (37
o o B _ .
Substituting z: = l-zi into 37 gives
J <
o Jk .
¥ = .
2 S ]I (z ) (38)
k=1 j=1

Since 36 and 38 are identities their coefficients can be eguated term
L

by term. Hote that each coefficient ) is 2 linesr function of those of

seeesd that are function values of points corresponding
2
to products of the form

]

' 2 zjk
p, = I[ (z,)
J=1

Yl,y seee 9yma -

wholly included in

n
2 zjk
v, = g_ (zJ.) .



Thus, each first order term corresponding to an undefined point will

be a linear Tunction of at most a constant and the unknown value corres-—

ovonding to that point. Thus, the unknown (u, ) value is uniguely determined
I

by a defined value. Extending the zrgument to higher order terms corres-

ponding to undefined voints, the only unknown (uk) value anpearing in the
coefficient will be tize value whose upoint corresvonés to tne term; 211

cther uninowns of lower order aaving already teen written as a function
of knowm values. Thus,Athe new unknown is & unicue funciion of known
values.

Taus 2 polynomial of the forz 36 uniguely defines =21l possible func-
tion value peints in terms of defined peints. mus no more than one

volvnomial of the form 3€ tekes on the funciion values at all defined noints.
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